Syntactic Identifier Conciseness and Consistency

Dawn Lawrie Henry Feild David Binkley
Loyola College Loyola College Loyola College
Baltimore MD Baltimore MD Baltimore MD
21210-2699, USA 21210-2699, USA 21210-2699, USA
lawrie@cs.loyola.edu hfeild@cs.loyola.edu binkley@gmla.edu

Abstract

prohibitively expensive. This paper considexymtacticconcise

Readers of programs have two main sources of domain infor- @hd consistent naming. In other words, by only considerimey t

mation: identifier names and comments. It is therefore irgodr

syntactic makeup of identifiers, can a useful approximatibotine

for the identifier names (as well as comments) to communicate techniques of DeiRenbock and Pizka be achieved?

clearly the concepts that they are meant to represent. Déifiek
and Pizka recently introduced rules for concise and coastst
variable naming. One requirement of their approach is aneekp
provided mapping from identifiers to concepts.

An approach for the concise and consistent naming of veembl
that does not require any additional information (e.g., appiag)
is presented. Using a pool of 48 million lines of code, experits
with the resulting syntactic rules for concise and consisteam-
ing illustrate that violations of the syntactic pattern gxi Two
case studies show that three quarters of the violations wereal
are “real”. That is they would be identified using a conceptpna
ping. Techniques for reducing the number of false positares
also presented. Finally, two related studies show thatgia
does not introduce rule violations and that programmersitam
use a rather limited vocabulary.

Keywords
Identifier Quality, Part-of-speech

1. Introduction

In more detail, DeiBenbock and Pizka define three rules, one
for conciseand two forconsistentdentifier names. An identifier is
concisef its semantics exactly match the semantics of the concept
it is used to represent. For exampteitput_file_name concisely
represents the concept of the name of an output file. (A eklate
notion, correctnessallows an identifier to represent a more gen-
eral concept. For exampléle_name correctly, but not concisely,
represents the concept of the name of an output file, whilieldre
tifier foo neither correctly nor concisely represents the concept.)

There are two rules related wonsistentidentifiers. They
identify inconsistencies caused by identifier homonyms syrd
onyms. In natural language, a homonym is one of two or more
words spelled and pronounced alike but different in mea(engy,
‘waste’ and ‘waist’) [14]. A synonym is one of two or more
words or expressions of the same language that have the same o
nearly the same meaning in some or all senses, (baby’ and
‘infant’) [14].

In a program, an identifier isomonynif it is associated with
more than one concept from the program. For example, in a pro-
gram dealing with both absolute and relative directory p&tvo

Concise and consistent variable naming, as described bydifferent concepts), the identifigrath is a homonym as it is as-
Deifenbock and Pizka, can improve code quality through im- sociated with more than one concept. As DeiRenbdck andaPizk

proved identifier names [5]. The motivation for their worktle
observation that “lousy naming in one place spoils comprehe
sion in numerous other places,” while the basis for theirknier
found in the quote “research on the cognitive processesmsf la
guage and text understanding shows that it is the semantics i
herent to words that determine the comprehension proc&$s” [
Other studies have also pointed to the importance of goadtiide
fier names. For example, Rilling and Kelmola observe “In com-
puter programs, identifiers represent defined concept$; \jtiile
Caprile and Tonella point out that “Identifier names are dith®
most important sources of information about program exsiti4].

DeilRenbdck and Pizka's technique, requires a mapping from
the domain of identifiers to the domain of concepts. Such amap

emphasize, accurately knowing the set of all concepts used i
program is important. The identifi@ath is not a homonym in a
program with only one path concept. Thus, it is important tmdy

concepts from the program be considered. Otherwise, theepbn
space becomes too large and unwanted inconsistencies occur

The second inconsistency involvegnonyms two identifiers
that can be associated with a common concept. For example, th
identifiershash andhash_value are synonyms as each can repre-
sent the concept of an objectissh value As a second example,
the identifierslist_head andlist_front are also synonymshéad
andfront are synonyms in English).

Identifiers that fail to be concise or consistent increasetm-

ping must be constructed by an expert. For new projects, this prehension complexity and its associated costs [5]. Stikirda

mapping can be constructed alongside the program with nainim
addition cost. For existing programs, however, the costlmn

can be identified using DeiBenbdck and Pizka’s techniques p

vided a mapping from identifiers to concepts is availablethin 2.2 ldentifier Splitting
absence of such a mapping, it is still possible to identifylzsst of

these naming failures. Techniques for doing so are intredand _ Follqwing ot_hers who study identi_fiers, identifiers are dedl
empirically investigated in this paper. In more detail, fiignary into their constituent parts for analysis [5, 4, 11, 2]. Heréhese
contributions of this paper are the following: parts are calledWwords' — sequences of characters with which

some meaning may be associated. Two kinds of words are consid
1. The definition of syntax-based conciseness and consistencyered:hard wordsandsoft words Hard words are demarked by the
that does not require an expert-constructed mapping from yse of word markerse(g, the use of CamelCase or underscores).
identifiers to concepts. For example, the identifiersponge_bob and spongeBob both

2. Anempirical investigation of a tool based on the syntaatied ~ contain the well separated hard wosfgnge andbob.

inition. The experiments, which study almost 50 million . . L . "
lines of code, consider the prevalence of conciseness and_ FOr many identifiers, the division into hard words is sufintie
consistency failures. Statistical models are used to ibette This occurs when all the hard words are dictionary words onkm

understand the collected data. apbreviations. When the hard word is. neithgr, the identdaer-
tains non-well-separated words. The identification of ¢éhsoft
3. Two case studies. The first exhaustively considers all con- words is the goal of identifier splitting. For example, the iddieti
ciseness and consistency failures from two small programs. zeroindeg includes a single hard word because there are no word
This study compares the tool's output to that produced by markers; thus, division into hard words is insufficient. Eiéitter
a human “oracle”. The second case study considers a samdivides this hard word into the three soft wokso-in-deg (i.e.,
pling of the conciseness and consistency failures from the zero, in, anddeg, a known abbreviation). The algorithm does this
larger prograneMule, a 170 KLoC C++ program. by using a greedy approach that recursively compares tigeéon
prefix and suffix that are in the dictionary or a known abbreéeia

4. An empirical investigation of an observation by Antoniol et list
IST.

al., that programmers use a rather limited vocabulary [3, 2]
In particular, incorporating natural language synonynesdo
not dramatically increase conciseness and consisterley fai 2 3 Subject Programs

ures.

The analysis includes empirical data collected from 186 pro
grams. Up to 70 versions of a program were considered to suppo
the longitudinal studies. Ignoring multiple versions, 7@que
programs were considered. All but 12 were open source prgjra
The rest of this paper first presents some necessary backijrou Programs ranged in size from 1,423 to 3,087,545 LoC and edver

5. Finally, alongitudinal study addresses the question “dwes
lution introduce conciseness and consistency failures?”

material in Section 2. Definitions of syntactic concisenasd a range of application domains.@, aerospace, accounting, oper-
consistency are given in Section 3, followed by empiricatiss ating systems, program environments, movie editing, gastes

in Section 4. Related work is then considered in Section®alf, and styles (comment lines, GUI, real-time, embedded,. eto}t

the paper concludes with a discussion of some topics fordutu of the code was written in C. Significant C++ and Java code were
investigation and a summary in Sections 6 and 7. also studied along with a small amount of 30 year old Fortoatec

Several of the programs were written by programmers whose na
tive language was not English. For these programs the asalys
]]))) _was performed using a dictionary for the programmer’s edtn-
This section provides context for the technique descrilmed i gyage or, if multiple languages were evident in the codeytiien
Section 3 and the empirical evidence presented in Sectioht 4. of the respective dictionaries. (The publicly availabletisinaries

first, describes thg/ordNet tool used to obtain natural language that accompany the Linux spell checkspell version 3.1.20 were
synonyms and part of speech information and then the identifi geq)

splitting tool used to break identifiers up into their constit

2. Background

parts. Information on the subject programs studied is thre p Figure 1 shows 10 representative C, C++, and Java subject pro

sented followed by information on the statistical testduse grams. The two Fortran programs are not shown in the figure.
They are PLM compilers from 1975 and 1981 and include 9,704

2.1 WordNet and 11,478 LoC, respectively.

WordNet is a lexical database of the English language devel-

oped by the Cognitive Science Laboratory at Princeton Usitye The figure reports code sizes for C, C++, and Java (and their

[6]. WordNet contains 155,327 different words classifiedasns, sum) as counted by the Unix utilitwc (excluding header files).

verbs, adjectives, and adverbs. The power of WordNetcoraes f In addition, the total number of non-comment non-blankdioé

the relationships that have been identified, which includpgal code, as reported ksloc [15], is shown. The average percentage

relationships, synonym relationships, and homonym @tatiips of non-comment non-blank lines varies by language with 668% o

to name a few. For example, WordNet identiffesadand mind the C code, 72% of the C++ code, and 58% of the Java code being

as synonyms. This ontology has been used by many researcheraon-comment non-blank lines. The last two columns predent t
including those in the field of information retrieval [9] anidta start year of the project and its release year. These dates we
mining [8]. There is now an international conference desdte extracted from program documentation (internal and ezfgrin
WordNet which has reported on the creation of WordNet foeoth — general, the release year is more accurate as in can be Itifficu
languages — Russian, Arabic, Persian, Korean, etc., aricapp to determine the start year for a program that includes therdy
tions of the tool. libraries written before the program “started”.

wc sloc year

program C C++ Java Total Total start | release
cinelerra-2.0 1,044,996 106,357 0| 1,151,353 820,980| 1996 | 2004
cpm68kl-vl.2a 132,171 0 0 132,171 102,252| 1978 | 1984
empireserver 85,548 0 0 85,548 62,793 | 1985| 1998
eMule0.46¢ 1,759 172,164 0 173,923 135,567 | 1999 | 2005
14.2 2,109,050 398,463| 502,965| 3,010,478 1,704,823| 1993 | 2004
jakarta-tomcat-5.5 68,003 0 353,604 421,607 219,766| 1999 | 2005
LEDA-3.0 41,610 0 0 41,610 27,425| 1988 | 1992
minux-2.0 326,210 0 0 326,210 244,033| 1980 | 1996
mozilla-1.4 1,047,741| 1,949,292 6,493 | 3,003,526| 2,107,436| 1998 | 2003
quake3-1.32b 353,806 57,431 0 411,237 281,432| 1999 | 2005
Totals for all code not just that shown above
open source 19,170,546| 14,587,482| 6,327,380| 40,106,590| 27,129,263
proprietary sourcg 7,167,689 787,094 582,107| 8,536,890 5,391,815
all 26,338,235| 15,374,576| 6,909,487| 48,643,480 32,521,078

Figure 1. Subject Programs (proprietary programs are named

Figure 2 summarizes statistics regarding the identifiesagal
with some demographic informatioa.g, dominant programming

I#).

of comparisons and the adjustgéeialue is compared to the stan-
dard significance level (0.05) to determine significancekeYis

language, and the start and release years of the progran®. Thmethod and Bonferroni’'s correction were chosen becauyesattee

top 14 rows of the table present a representative sampleeof th

both rather conservative tests.

programs. The bottom seven rows summarize the data over all

programs (not just that of the representative programsertap
of the table). Summaries include two orthogonal groupirge(
source versus proprietary, and by programming languagepthn
the data taken collectively.

2.4 Statistical Tests

Several statistical techniques are used in the interpoataf
the data gathered during the study. This section introdtieese
techniques and can be skipped by those familiar with sigist

When a simple linear association is of interest, Pearsam's |
ear regression model, which measures linear correlatietvggen
variables, is built. For the effect of explanatory variahle, Y,
and Z on response variabld, the resulting model coefficients,
m;, belong to the linear equatioh = m1 X +m2Y +msZ + .
Each coefficient has an associatedalue. Ap-value less than
0.05 represents a significant explanatory variable.

For more complex models, linear mixed-effects regression
models [13] are used to analyze the data. Such models allw th
examination of important effects that are associated wighre-
sponse variables. The initial model includes explanatarjables
and a number of interaction terms. The interaction ternmmaall
the effects of one variable on the response variable to ehdag
pending upon the value of another variable. Backward ekutiim
of statistically non-significant term (> 0.05) yields the final
model. Note that some non-significant variables and intienas
are retained to preserve a hierarchical well-formulatedehfL0].

In these models, Tukey’s highly significant difference noeth
for multiple comparisons is used. However, computing adsech
t-value for each comparison and then using the standardatriti
value increases the overall probability of a Type | erroug;lBon-
ferroni’s correction is made to thevalues to account for multiple
comparisons. In essence eackialue is multiplied by the number

With both Pearson’s test and the linear mixed-effects s=joa
models, the coefficient of determinatiaki?, is reported. This co-
efficient is interpreted as the proportion of the variapitif the re-
sponse variable that is explained by the selected explanedoi-
ables. This coefficient ranges from 0 to 1; the closer to 1h#tter
the model.

3. Technique

DeiRenbdck and Pizka describe a formal model for adequate
identifier naming that includes rules for tleerrect and concise
naming of identifiers [5]. Their rules makes use of the setliof a
concepts relevant to a program and provide “a formal modettha
on bi-jective mappings between concepts and hames.”

The rules include three requirements involving homonyms,
synonyms, and conciseness. These three can be formalifeld as
lows: an identifieri is a homonym if it represents more than one
concept from the programe(g, the identifierfile in Figure 3a).
Two identifiersi1 andi2 are synonyms if the concepts associated
with i1 have a non-empty overlap with the concepts associated
with 2 (e.g, the identifierdile andfile_name share the concept
file namein Figure 3b). Finally, an identifiei for conceptc is
concise provided no concept less general tharepresented by
another identifier (an example is given in the next paragraph

DeiRenbdck and Pizka present a case study in which mainte-
nance introduces the seven identifipos, apos, abspos, relpos,
absolute_position, relative_position, and position representing
two conceptse; = “absolute positiohand c; = “relative posi-
tion”. The identifierposition fails the homonym consistency re-
quirement as it is associated with more than one concept tinem
program (in this case concepts andcz). In addition, the study
determined thatelpos andrelative_position were both used for
conceptes, which violates the synonym consistency requirement.
Finally, the identifieposition would concisely represents the con-
ceptabsolute_position provided that the program did not include

dominant | start | release LoC unique id hard soft percent

program language| year year (wc) ids instances words words increase
cinelerra-2.0 C 1996 | 2004 1,151,353 84,612 | 1,833,424 209,059 261,793 25.2%
cpm68kl-vl.1 Cc 1974 1983 73,172 4,167 79,660 4,560 8,193 79.7%
eclipse-3.2m4 Java 2001 | 2005 3,087,545 167,662| 3,893,272| 554,068 612,632| 10.6%
gce-2.95 C 1987 1999 841,633 44,941 897,728 110,060 146,474 33.1%
11 C 1987 1997 454,609 30,092 482,228 48,125 82,307 71.0%
14.2 C 1993 2004 3,010,478 113,662 2,694,901| 328,079 422,364 28.7%
16.6 C 2000 2002 237,257 10,791 104,290 29,207 34,549 18.3%
jakarta-tomcat-5.5.11 Java 1999 2005 421,607 19,202 351,487 48,537 54,471 12.2%
mozilla-1.6 C++ 1998 | 2004 2,919,307 189,916| 3,649,329 563,448| 659,396 17.0%
mysql-5.0.17 C++ 1996 2005 1,293,270 50,383 | 1,023,362 132,249 163,363 23.5%
plm80s Fortran 1975 1977 9,704 581 22,314 581 886 52.5%
quake3-1.32b C 1999 2005 411,237 31,114 542,664 75,474 94,144 24.7%
sendmail-8.7.5 C 1983 1996 78,757 2,877 62,075 4,492 6,828 52.0%
spice3f4 C 1985 1993 298,734 12,388 452,423 24,599 34,882 41.8%

Totals for hard soft
(over all code not | instances| words | words LoC unique id hard soft percent
just that shown) per id perid | perid (wc) ids instances words words increase
open source 19.2 2.7 3.2 40,106,590 2,504,937 48,098,029| 6,817,779| 8,040,625 17.9%
proprietary 19.6 2.7 3.5 8,536,890| 385,792| 7,543,663| 1,055,329| 1,331,327| 26.2%
C 18.6 2.5 31 26,338,235| 1,566,289| 2,9074,119| 3,956,372| 4,821,045 21.9%
C++ 19.3 2.9 35 15,375,576| 965,402 | 18,836,801| 2,835,896| 3,341,987 17.8%
Java 22.1 3.0 3.4 6,909,487| 356,225| 7,885,428| 1,076,709| 1,203,537 11.8%
Fortran 18.0 1.4 1.8 21,182 2,238 40,273 3,141 3,993 27.1%
All 19.3 2.7 3.2 | 48,643,480| 2,890,153 55,638,621| 7,872,119 9.370,562| 19.0%
Figure 2. Basic counts from 14 selected programs. Some of the programs from Figure 1 are repeated
for comparison, other’s were selected to provide diversity in the presented data. *Percent increase

is the percent increase from hard words to soft words.

any other position concepte.(, relative positio). As the pro- when one identifier includes, in the same order, all the softs
gram included multiple specific kinds of positions, the itféer from another. For example, the identifiglative_position in-
position fails the conciseness requirement. cludes two hard words each composed of a single soft words Thu

this identifiers includes, in order, all the soft words frdme iden-

In most instances, when the homonym requirement is violated tifier position.

the synonym requirement is also violated. Figure 3 illussahis.

The identifierfile is a homonym associated, in different parts of
the program, with the concept offide nameand elsewhere file
pointer. If the two concepts are to be referred to in the same scope
(at least in a strongly typed language) then at least ondiadal
identifier would be required as shown in Figure 3b. HoweVes, t
inclusion of this second identifier introduces a synonymiation

as the identifierfile andfile_name both refer to the same concept.

An important implication of this containment is that the eon
cepts associated with the two identifiers have a non-empty in
tersection; thus, violating DeiRenbdck and Pizka conspgice
by definition. The presence of a second containing identifier
(e.g, absolute_position), which also containposition, implies
DeifRenbdck and Pizka rule for conciseness has also bektedo
It does so because the two containing identifiers imply tlee pr

In this example any function that opens a file would need to re- gram includes two separate concepts, but the containedfiden
fer to both thefile nameandfile pointerconcepts. As an example does not precisely represent either of them. More formiitig,
in which it is plausible that a homonym would exist inthe atzse ~ two violations are defined as follows.
of a synonym, consider the situation shown in Figure 3c irctire

text of a program that reads a directory path into the vagiphth Definition 3 Syntactic Synonym Consistency and Conciseness
and then passes it to either functitinor f2 depending on the path ~ Let identifier id; be the sequence of soft words
being relative or absolute. 11 andf2 use the nameath for their swy swsz - -+ swyni. ldentifiersid; and ids fail the syntactic
formal parameter, then the program includes two conaefrtive synonym consistence requiremeift id, includes the se-
pathandabsolute pattand only uses one identifigrath, to refer quence of soft wordsw;wsz --- swi swsa « -+ SWn1 -+ Wn2

to them. This violates the homonym rule, but not the synonym (i.e, id2 = wiwsz---idy -+ wn2). Furthermore, id;
rule. fails the syntactic conciseness requiremeifitthere exists a

third identifier ids that includes the sequence of soft words
The absence of a concept mapping precludes the discovery ofu; us - -+ swi swa -+ SWn1 -+ -+ Uns.
identifiers that violate the homonym restriction only. Tegthat

identifiers satisfy a restricted form of synonym consisyeand Section 4 empirically investigates two important questioe-
conciseness, can be achiewtactically(i.e, without the iden- |ated to this definition. First, do synonym consistency ammbise-
tifier to concept mapping). It turns out that a similar patté- ness failures exist in real code? Obviously, the technigu lit-
dicates a violation of the syntactic-synonym consisterezjuire- tle interest if violations are infrequent or non-existe®écond, are

ment :_;md th_e syntac;ic cgnciseness requirement: Bothvienai syntactic violations indicative of violations using theiBenbodck
identifier beingcontainedin another. Here containment results and pPizka concept-map based definitions? If the syntactic ap

file pointer file name

i

C>file pointer

Concept
Space

3

O

file name

Oabsolute patCh> relative patt

Name
Space
file

)

Figure (c) shows a plausible homonym only example.

proach can identify a useful subset of the violations, withihe
need for a concept mapping, then it forms the core of a usedll t

Section 4 also investigates a related hypothesis suggbgted
the following observation of Antoniol et al., “Programmeend
to process application-domain knowledge in a consistent wa
when writing code: program item names of different code re-
gions related to a given text document are likely to be, if not
the same, at least very similar” [3, 2]. This observation-sug

T
M g file_name
(b)

Figure 3. lllustration of the two types of syntactic violati
Figure (b) shows how a synonym violation is also introduced b

path

(c)

on. Figure (a) shows a homonym violation.
y the function that opens a file. Finally,

4.1 Statistics over all Programs

The ability to identify syntactic conciseness and consiste
failures is of little value if the pattern does not occur imgtice.
Figure 4 shows the percent failure for 42 representativgraras
along with the number of unique identifiers in each prograih an
the percentage afeverefailures in which the contained identifier
includes at least three soft words. The chart below the tahlavs
the failure percents for all 186 programs. Synonym and &BAci

gests programmers use a limited vocabulary and can be tested€Ss failures are sorted independently; thus, verticabesisons

using WordNet to identify all possible synonyms for each soft
word in an identifier. More formally, assume that for soft dor
w, S(w) denotes the natural language synonymswuof In
Definition 3 replacew; wz - -+ swi swa - -+ Swy -+ - Wy With
Wi W -+ 8182+ Sn -+ Wm, Wheres; € S(sw;) and the cor-
responding replacement fads. For example, usingVordNet,
the identifierdist_head andlist_front violate the synonym rule as
headandfront are natural (English) language synonyms.

do not reflect a particular program. The shape of the curves pr
vides a general feel for the distribution of the data. Basethe
last row in the table, an average program includes just 09662
identifiers that fail the synonym requirement and just ov@dQl
that fail the conciseness requirement. This indicatessthffitient
violations exist in practice to warrant further study.

From the table in Figure 4, it appears that the percentageef s
onym failures is not strongly correlated to the number ofjuei

This section concludes by considering one of several refine- identifiers. This is statistically trueR® = 0.12). To better model

ments to syntactic conciseness and consistency. Sectiomueg
work) describes others. Definition 3 is a straightforwastnietion
of DeiRenbdck and Pizka's work in the absence of an identifie
concept mapping. Itis possible to improve upon this by expip
certain grammatical patterns that indicate different epts.

the percentage of synonym failures, backward eliminatiant-s

ing with the explanatory variables program size, start year
lease year, programming language, and open source was used.
The resulting model includes only release year and progiagmm
language. Notably absent is any measure of program size. The
model's R? value of 0.48 means that it explains just under half of

For example, one common pattern seen in the empirical stud-the variation in the percentage. This model indicates areases
ies is to have two identifiers where one is a noun phrase and an-°f 0-42% synonym failures for each year later a project isaséd
other that includes a verb with this noun phrase. For example @nd a4.3% increase for Java programs (no other languageanade

tree_node andvisit_tree_node. Syntacticallytree_node is con-
tained invisit_tree_node and thus a (syntactic) violation. How-
ever, these two identifiers are associated with differesia{ed)
concepts and thus no violation exists in the Deil3enbdckParkh
sense. UsingVordNet to identify parts of speech, this pattern is
easy to detect. Section 4 empirically investigates theuieagy of
this pattern.

4. The Study

Data regarding syntactic consistency and concisenessdall

significant difference).

The model for the percentage of conciseness failures isrless
formative and more complicated. 1f2* value of 0.22 indicates
that less than a quarter of the variation in the percentagmiof
ciseness failures is explained by the model. The final madel i
cludes the following explanatory variables: start andaséeyears,
program language, and open-source. The main complication i
this model is an interaction between open source and rejease
Thus release year has a different effect on open and prapriet
source code. In this case, an increase in release year lanigs
crease of 0.14% to the percentage of conciseness failumgseim

found in the 186 programs is presented through five empirical source code while it brings a reduction of 0.28% in the percen

studies. The first summarizes statistics over all prograNest,
two case studies are considered, one exhaustive and onéreamp
Finally, a longitudinal study and an investigation of thepamt of
incorporating natural language synonyms into identifieescan-
sidered.

age of conciseness failures in proprietary code. Neith¢éhede
percentages are large. In addition, every year later a girojas
started it has 0.12% fewer failures and, as with the synorajm f
ures, Java brings a greater percentage. In this case 1.9% mor
conciseness failures.

unique Failures Severe Failures
identi | Syno | Concise| Syno | Concise
program fiers | nym ness nym ness
LEDA-2.1.1 2226 21% 10% 2% 2%
LEDA-3.1.2 2946| 20% 8% 1% 1%
az2ps-4.12 3593 22% 10% 3% 2%
apachel.3.29 8040| 19% 8% 4% 3%
barcode-0.98 344 21% 6% 5% 1%
*byacc.1.9 507 20% 9% 1% 0%
cinelerra-2.0 71995 21% 9% 6% 4%
*compress 164| 11% 5% 0% 0%
cpm68k1-v1.3 2417 12% 6% 0% 0%
cvs-1.11.1p1 5552 20% 9% 3% 2%
eMule0.46¢ 213720 17% 8% 6% 4%
eclipse-2.1 83207 26% 11% | 10% 6%
eclipse-3.2m4 155932 25% 9% | 11% 4%
*genesis-all-3.0 2110 33% 12% | 13% 5%
ghostscript-7.07 26546 19% 9% 6% 4%
gnuchess-4.0 1198 16% 8% 1% 1%
*gnugo-1.2 114 15% 8% 0% 0%
gnugo-2.0 627| 15% 6% 1% 1%
gnugo-3.0.0 3118 21% 9% 3% 2%
httpd-2.0.48 16975 19% 9% 5% 3%
11 29619 | 17% 12% 5% 4%
*14.1 92547 | 21% 11% | 10% 7%
14.2 110727 21% 11% | 10% 7%
16.1 9869 | 16% 8% 5% 4%
16.6 10583 | 16% 8% 5% 4%
19 41189 | 20% 9% 7% 5%
112 1098 | 19% 11% 4% 3%
jakarta-tomcat-3.0 3920 24% 9% 5% 3%
jakarta-tomcat-5.5 18416 25% 10% 7% 4%
javabh073 1716| 27% 9% 5% 2%
minux-2.0 21076| 15% 7% 1% 1%
mozilla-1.0 173124 22% 9% 8% 5%
mozilla-1.6 176318| 22% 9% 8% 5%
mysql-5.0.17 46297 21% 9% 7% 4%
*pacifi3d0.3 1139| 11% 5% 1% 1%
*pIm80s 539| 8% 4% 0% 0%
quake3-1.32b 28676 18% 8% 5% 3%
samba-3.0.0 22553 20% 9% 8% 4%
spice3f4 9845| 18% 10% 5% 4%
*tile-forth-2.1 661 | 34% 22% 2% 2%
uupc 147| 12% 7% 1% 1%
Min 114 8% 4% 0% 0%
Max 181032| 34% 22% | 13% 7%
Average 14512 20% 9% 4% 3%
35%| -
—— percent synonym failures
30%))
— percent conciseness failures Jl
25%
W
20% pp D

M

15%
10% {'"'ﬁ

5%

0%

Figure 4. Percent synonym-consistency and
conciseness failures. (A “*” marks programs
with a minimum or a maximum value. Propri-
etary programs are named I#.)

4.2 Exhaustive Case Studies

Given that a significant number of syntactic synonym and con-
ciseness violations occur, the next question to addresséshese
violations real?” There are two possible differences betwne
violations that the syntactic approach reports and thosairudrl
using a concept mapping. Clearly the syntactic approadhmvisis
violations when the identifiers do not share common souraesvo
For example, the identifiefge, fp, andfin might be synonyms (all
representing thélle pointerconcept), but syntactic approach can-
not determine this.

The other difference involves identifiers for which the syatiic
approach identifies a violation, but no violation exists whising
the associated concepts. To determine how many such faise po
tives the syntactic approach produces, hand inspectiolh\dbka-
tions from two of the smaller programs was performed. As show
in the following table, this inspection produced five catéem
The encouraging news is that 72% of the synonym violations an
76% of the conciseness violations were true violations.exam-
ple, the identifierstatus andfile_status violate the synonym con-
sistence requirement while the identifilaeme_dir andin_home
indicate two refinements of the concdpime which means the
identifierhome fails the syntactic conciseness requirement.

Description Synonym | Conciseness
(1) violation 49 T72%| 22 76%
(2) non violations 6 9% | 3 10%
(3) attribute 9 13%| 1 3%
(4) verb-noun phras¢ 3 1% | 3 10%
(5) struct field 1 1%| 0 0%
All 68 100%| 29 100%

Many of the remaining identifiers were non-violations (9% of
the synonym violations and 10% of the conciseness violatieor
example,prefix is contained insolate_tilde_prefix. While pre-
fix could be replaced wittring_prefix in the string concatena-
tion routing where it is foundisolate_tilde_prefix is a function
whose associated concept does not overlap with thatefix. A
conciseness example framucp is the identifierd=ILE, copy_file,
file_mode, andlog-file. As FILE is a type, it's concept is sepa-
rate from the others, although the syntactic algorithm ognat
present, make this determination.

The remaining three categories all suggest refinementseto th
technique. The third category includes what Ada refers tatas
tributes and C# as properties. For example, the two idergtifie
cwd andcwd_len (a synonym failure), and the three identifiegs
sult, result_index, andresult_size (a conciseness failure) include
variable properties Here, by convention, programmers recognize
identifiers such aswd andresult as the underlying value of which
the other identifiers are properties.

The fourth category was mentioned at the end of Section 3.
An example includes the identifier®me_dir andget_home_dir,
which violate the syntactic synonym rule, but are assodiatith
different concepts. Using part-of-speech informatiors tlase can
be identified when two identifiers differ by a verb. This pattes
explored further in Section 4.5.

The final category includes a structure fieldr and the local

identifiernext_adr. DeiRenbdck and Pizka do not explicitly dis-

cuss structure fields, but including the structure natattef in

the case), seems a straight forward extension of their woak t

removes the synonym failure in this example.

4.3 eMule Case Study

The case study from the previous section considers all the vi

olations in two small programs. This section presents atiisle

case study” o€Mule a 170 KLoC C++ program chosen at random

from the larger programs. Examinied/ule’s 3725 synonym fail-
ures and 1762 conciseness failures is prohibitively expensn-
stead seven representative examples were selected. Ehaahein
three parts: the base (contained) identifier, the idergifteat con-
tain it, and a discussion.

(1) m_strHost (the contained identifier)
m_strHostName

The first case is the classic synonym violation in which
a concept that already has a name receives another.

In this case, the identifiem_strHost and the identifier

m_strHostName both denote to the same concept (the
string representation of the host computer to connect to).

(2) CheckDiskspace
CheckDiskspaceTimed

As a second classic exampkEylule includes two methods

for checking if sufficient disk space exists to write a file.

Their names,CheckDiskspace and CheckDiskspace-

Timed, clearly fail to satisfy DeiBenbock and Pizka’s def-
inition of consistency as they both refer to the concept of
atimed disk checklin this instance, one obvious fix would
be to rename the first meth@heckDiskspaceUntimed or
something similar. This would disambiguate the names for
the two concepts of timed and un-timed disk space checks.

(3) IcmpCloseHandle

IpfnlcmpCloseHandle

The third example illustrates a case in which synonym re-
striction is formally violated, but knowing a little aboute
identifiers removes any real issugMule includes the class
type IcmpCloseHandle and the variablépfnicmpClose-
Handle of that type. Both identifiers represent the same
concept, but knowing that one is a type name disambiguates
the two.

(4) m_n_file

m_n_file_size

The identifiersm_n_file and m_n_file_size form a less
egregious synonym violation. The methodht* CZIP-

File::GetCount() { return m.nFile; }" suggests that
consistency could be attained by renamimgnFile to

m_nFileCount

(5) m_wndSplitter

m_wndSplitterchat
m_wndSplitterirc
m_wndSplitterstat

The eMule classCSplitterControl implements a window
splitter control. The server window includes a window
splitter, under the namen_wndSplitter, as do several
other windows. For example, the “chat” window includes
m_wndSplitterchat which, like m_wndSplitter is of type
CSplitterControl. (Note that this identifier is not well sepa-
rated and thus identifier splitting into soft words is reqdir
to uncover this conciseness failure.) It is hard to know if
the program’s evolution began with a single splitter (in the
server class) and the others were subsequently introduced
or not, but in order to have concise nameswndSplitter
should be renameah_wndSplitterServer.

(6) GetFileType

)

GetFileTypeDisplayStr
GetFileTypeByName
GetFileTypeSystemimageldx
GetFileTypeDisplayStrFromED2KFileType

The penultimate example involves five identifiers. The ex-
istence of the second, indicates a synonym violation and
means that the first needs to be replaced to separate its con-
cept from that of getting a displayable string represeniati

for a file type. One naive way of doing so is to replace
the first identifier withGetFileTypeNonDisplayStror Get-
FileTypelnternalStr. Note that the latter of these conflicts
with the third identifier.

A snippet showing the definition of the third identifier ap-
pears in Figure 5(a). As is clear from the comments pro-
ceeding the definition, to achieve conciseness, the third
identifier should be replacement with something Iet-
FileTypelnternalByName. Similarly, to achieve concise-
ness, with the fourth identifier, the first would need to be
separated from the concept of an “image index”.

Finally, part of the definition of the fifth identifier is shown

in Figure 5(b). Here the comment proceeding the defini-
tion muddies the water as the method produces an inter-
nal file type, but unlikeGetFileTypeByName, this one
appears to be appropriate for the GUI. This implies that
internal file type names can be suitable for the GUI or
not. Something the names of the two methods fail to
make clear. For example, the identifi&etFileTypeBy-
Name should bear more in common witetFileTypeDis-
playStrFromED2KFileType as it too returns an internal,
type name. As with the others, this identifier also conflicts
with the first. The name foGetFileType would need to
take all these concepts into account. To the extent that this
example seems confusing, it is an excellent indication®f th
value of concise and consistent identifiers, as they would
have had helped make clear the various concepts related to
type names.

ident

IPHeader.ident (a field)
m_bLogSecureldent
m_htiLogSecureldent

/1 Return file type as used internally by
/1 exam ning the extension of the given fi

eMul e,
| enane

CString GetFil eTypeByName(LPCTSTR pszFi | eNane)

{

}
(@)

/] Returns a file type which is used eMule internally only (GU)
CString GetFil eTypeDi spl ayStr Fr onED2KFi | eType(LPCTSTR pszED2KFi | eType)

{

}
(b)

Figure 5. Code snippets for the conciseness case study.

Percept Synonym and ConcisenessFailures

28%

 A—
T —

—t—Ieda (synonym)
——gnugo (synonyrm)

- -# - leda (conciseness)
= =y = gnugo (conciseness)

20%

16%

10%

R L L o

PSR P S
- -
R EEE TR & *

5%

Figure 6. Two example programs from the lon-
gitudinal study.

The final example, is really a non-example. The identifier
ident, which is contained in 37 other identifiers, exists in
two separate contexts. First, it is a local variable of the
methodClrcMain::Connect(). As there is no real conflict
with the associated concepts for this local variable, itsug
gests that scope information might play a role in suggesting
to an engineer when a violation might be a false positive.
The second use aflent is as a field of the structurd®-
Header. One might view it'sfull name asPHeader.ident
which would be a more concise name. Deil3enbdck and

Pizka do not discuss using context provided by a scope or

a type (class or structure), but it seems a straight forward
improvement.

4.4 Longitudinal Study

Does evolution introduce synonyms? In principal, as a pro-
gram ages, if it takes on new concepts then identifiers tha¢ we
previously consistent and concise may become inconsistet
“un-concise”. This occurs when software evolution introelsi
new identifiers (and their associated concepts). For exagntipd
programwhich, actually thegetopt library, originally only pro-

cessed the short-form command line options. Later, a long fo
was added. The current code includes the identifiptfons and
long_options. Knowing the code’s historyptions is understood

to be associated with the conceptstiort options While options
was originally a consistent identifier, the introductiontioé con-
cept oflong options means that it is no longer consistent. As as
second examplgosition concisely represents the concepiso-
lute_position provided that the program does not include any other
kind of position €.g, relative_position).

Seven of the programs studied included four or more versions
Statistically, modeling the percentage of synonym and iseness
failures as a function of the version number, there is egdnto
evidence that evolution introduces synonyms. This is Vigag-
parent with the two examples shown in Figurel@&da is typical
of most of the programs showing some ups and downs but no sig-
nificant trend.Gnugo shows a slight increase early, but then levels
out and remaining flat from versions 10 through 70.

4.5 WordNet

As introduced in Section 2VordNet is a powerful tool for
processing natural language. Identifiers are often contpaofagic-
tionary words, and thug/ordNet can aid in their analysis. Two
applications ofWordNet are considered in the section. The first
examines the breadth of the vocabulary used by programmers a
the second considers how certain false positives can béfiden
using part of speech information.

When inspecting the identifiers in source code several asitho
(e.g, Antoniol et al. [2] and Caprile and Tonella [3]) essentjall
observed that programmers use a limited vocabulary. Fonpbea
free can be an adjective, a verb, or adverb, but Caprile and Teonell
discovered that it was only ever used as a verb. One impicati
this is that similar concepts are given similar names. Tmédly
investigate this observation, the consistencies and seness fail-
ures in all programs were recomputed after factoring innahtan-
guage synonyms. Doing so allows the tool to correctly deitegm
that the identifierdist_head andlist_front are synonyms asead
andfront are natural language synonyms in English. Finding very
few additional violations, this experiment supports theekation
the programmers use a limited vocabulary.

40%

- - - - Original Synonyrm
Wygrdhet Synonyrn
- - - - Original Conciseness
WordMet Conciseness

38% q

0% 7

25%

20%

158%

10%

5%

0%

Figure 7. Incorproating natural language
symonyms from WordNet. The x-axis shows
each prorgam sorted seperately for syn-
onym and concisness violations without us-
ing WordNet.

Statistically, for synonym violations, incorporatiMjordNet
increases the number of violations 2.8%%(= 0.998). This is
shown graphically by the two black lines of Figure 7. The klac
jagged (solid) line shows the impact of usididprdNet as com-
pared to the noWordNet data shown by the dashed line. For con-
ciseness violations the increase is only 2.18% € 0.996). This is
shown graphically by the two lower gray lines. The ratherimad
increase for both synonym and conciseness violations stgie
observation that programmers use a limited vocabulary.

The second use afVordNet is to categorize identifiers based
on certain grammatical patterns. This is, in essence, tre cit
a grammar-based technique similar to function-name granofia
Caprile and Tonella [4]. Two patterns were used in this preli
nary study. Both are based on studies of the tool's outpueyTh
match identifiers that include a noun-phrase and a singli¢iaolal
soft word that is either a verb or an adjective. This addil@oft

word may come before or after the noun phrase. The verb form

comes from functions that act upon data (the noun phras@mEex
ples, found by the tool, are shown in the top of Figure 8. Heee t
verb typically comes before the noun phrase. The adjectixa f
comes from variables that represent attributes of othealis.
Examples, found by the tool, are shown in the bottom of Fi@ure
Again, the adjective typically comes before the noun phrase

The verb-nourphrase analysis is conservative in that only
words that are exclusively used as verbs are consideredex-or
ample, consider the identifieeslit_clip andfree_node. The word
“edit’ only appears as a verb in English, while the worfce&’
can also be used as a noun, adjective, and adverb; edits;lip
was counted, bufree_node was not. Similarly, the adjective-
nounphrase form required words that only occur as adjectives.

Numerically, the verb form accounts 4.5% of the synonym vi-
olations. This is consistent with the percentage identifiethe
exhaustive case study of Section 4.2. The adjective forrolatts
for 2.2%, or about half as many of the violations. Together th
two grammar based patterns identifier 6.7% of the violatidss
suming that the case study from Section 4.2 is represeetdtiis
represents about one quarter of the false positives.

Verb-nounphrase
absolute_path get_absolute_path

birth_day get_birth_day
base_name parse_base_name
user_name send_user_name
arena unlock_arena

clip clip_edit

Adjective-nounphrase
background_color background_color_selected

bit highest_bit
history previous_history
token preceding_token
tokens saved_tokens
child previous_child

Figure 8. Grammar examples.

5. Related Work

This section considers four related projects that focuslen-i
tifier names. First, Anquetil and Lethbridge consider eotirey in-
formation from type names in a large Pascal applicationThpy
define two records to implement the sacenceptif they have
similar field names and types (though they are lax on enfgrcin
type equivalence). Thus, this work provides a framework linchv
to study a form of concept identification (or at least conesptiv-
alence) through types.

Taking type information into account is an example of thalkin
of information that a fact extractoe(g, Columbus [7]) can ex-
tract about identifiers. For exampleee_node is contained in
visit_tree_node, andposition is contained irabsolute_position.
Knowing thatvisit_tree_node is a function andree_node a for-
mal parameter of the function indicates that the two arecateml
with different concepts and thus not a violation of the symon
rule in the same way that two global integer varialpesition
andabsolute_position are.

Caprile and Tonella analyze function identifiers by conside
their lexical, syntactical, and semantical structure [Bhey later
present an approach for restructuring function names aahiea-
proving their meaningfulness [4]. The analysis involvesaiing
identifiers into well separated wordse(, hard words). The re-
structuring involves two steps. First, a lexicon is stadizad by
using only standard terms as composing words within idensifi
Second, the arrangement of standard terms into a sequesnte ha
respect a grammar that conveys additional information. exer
ample, the syntax of an indirect action, where the verb idigitp
is different from the syntax of a direct action. They wereestal
come up with an effective grammar for the restricted domédin o
function identifiers. Extending this to all identifiers isamtrivial
task, but the resulting grammar would be useful in refining th
notion of syntactic consistency and conciseness.

DeiRenbodck and Pizka stress the value of identifiers incgour
code [5] as they make up a significant amount of the unique in-
formation available from the source. For example, Eclip€&3
has 94,829 different identifiers which is around the samel®rm
of words as in Oxford Advanced Learner’s Dictionary. Thesoal
introduce a tool that enforces the rules for consistent amtise

identifiers during program construction. This is done wité &id
of an identifier dictionary. The tool improves the produityivof
programmers.

Finally, Takang et al. note that there is some controvershen
value of dictionary word identifiers [12]. For example, Sidee-
man and Mayer report that “variable names had a statistigal s
nificance on comprehension.” However, their study includely
beginning students as participants. On the flip side, Shdpgta
al. observe that “variable names did not have a statistigaifs
cance on the subject’s performance.” This was based on at-exp
iment that involved 36 professional programmers. In thioed
experiment, the programs were quite small (they varied éetw
26 to 57 lines of code), which may have been too short to bring
out differences especially with professional programmers

6. Future Challenges

The current tool does not discover the violation that oc-
curs betweerabsolute_path_given and abs_path becauseabs
is an abbreviation ofibsolute. Definition 3 could be broad-
ened to include such cases as follows: for soft ward
let A(w) denote the set of all dictionary words appearing
in the program that map to the same conceptwas In
Definition 3 replacew; wz - -+ swi swa - -+ Swy - -+ Wy, With
Wiw2 - a1 a2 - Gn - Wm, Wherea; € A(sw;) and the cor-
responding replacement fads. As absolute is in A(abs) the
above violation would be detected.

While presently unimplemented, the abbreviation relatién
could be approximated by performing a wild-card search & th
the documentation (both internal and external). For exantpe
search for &.b.s.” where “.” represents any sequence of valid
identifier characters in thmozilla source yields a single dictio-
nary word,absolute. Two other examples occurring in the case
study were extracted with the help of the unix utilitggep andis-
pell include horiz abbreviatinghorizontalandtriag abbreviating
one of the wordgriangle or triangulate

Finally, in generating the examples used in the case stitdies
became clear that following the rules produced improvea ¢bdt
was easier to comprehend. However, this is an ideal that ray b
difficult to reach. For example, consider trying to motivage
placing buf with buf_value to avoid a conflict with the identifier
buf_len. By convention, most programmers would understand that
buf referred to the buffer's value. Empirical evidence as taiine
pact of allowing such “violations” on programmer compresien
is another area of future investigation.

7. Summary

DeiRenbdck and Pizka’s propose the enforcement of rules fo
consistent and concise identifiers using a tool that increatly
builds and maintains an identifier dictionary as a systeneisg
developed. The identifier dictionary “explains the langriaged
in the software system, aids in consistent naming, and ivgsro
productivity of programmers by proposing suitable namegzedd-
ing on the current context.” [5]. This paper studies therietsdn
and extension of DeiRenbdck and Pizka's rules that is ctainbel
without a mapping from names to concepts. As the empiridal ev
dence shows, these syntactic rules are useful in idengifygmsis-
tent and conciseness identifiers.

10

8. Acknowledgments

This work is supported by National Science Foundation grant
CCRO0305330.

9. References

[1] N. Anquetil and T. Lethbridge. Assessing the relevantelentifier
names in a legacy software systemPlmceedings of the 1998
conference of the Centre for Advanced Studies on Collalverat
ResearchToronto, Ontario, Canada, November 1998.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and Erlble
Recovering traceability links between code and documientat
IEEE Transactions on Software Engineeri28(10), October 2002.

B. Caprile and P. Tonella. Nomen est omen: analyzing dngliage
of function identifiers. InNMorking Conference on Reverse
Engineering pages 112-122, Altanta, Georgia, USA, October 1999.

(3]

(4]

B. Caprile and P. Tonella. Restructuring program idetinames.
In ICSM pages 97-107, 2000.

F. DeilRenbdck and M. Pizka. Concise and consistent mguthin
Proceedings of the 13th International Workshop on Program
Comprehension (IWPC 20Q05t. Louis, MO, USA, May 2005.
IEEE Computer Society.

(5]

[6] C. Fellbaum, editonMordNet — An Electronic Lexical Database
MIT press, 1998.

R. Ferenc, ?. Besz?des, M. Tarkiainen, and T. Gyim?tbju@bus
- reverse engineering tool and schema for c+4HBEE
International Conference on Software Maintenance (ICSKBR220
pages 3-6, Montreal, Canada, October 2002. IEEE Computer
Society Press, Los Alamitos, California, USA.

1. Jonyer, D.J. Cook, and L.B. Holder. Graph-based h@maal
conceptual clusterindlachine Learning Research Archj19 —
43, March 2002.

R Mandala, T Takenobu, and T Hozumi. The use of wordnet in
information retrieval - group of 5. IRroceedings of Coling-AGL
pages 31-37, 1998.

C. Morrell, J. Pearson, and L. Brant. Linear transfaiioraof linear
mixed effects modelslhe American Statisticiarb1:338-343, 1997.

(7]

(8]

El

[20]

[11] J. Rilling and T. Klemola. Identifying comprehensioattlenecks
using program slicing and cognitive complexity metrics. In
Proceedings of thé1*" IEEE International Workshop on Program

ComprehensigrPortland, Oregon, USA, May 2003.

[12] A. Takang, P. Grubb, and R. Macredie. The effects of cemtsand
identifier names on program comprehensibility: an expéeken
study.Journal of Program Languaged(3):143-167, 1996.

G. Verbeke and G. Molenberghsinear mixed models for
longitudinal data Springer-Verlag, New York, second edition, 2001.

[14] WebsterCollegiate Dictionary,11t" Edition. Merriam-Webster,
2003.

David A. Wheeler. SLOC count user’s guide, 2005.
http://www.dwheeler.com/sloccount/sloccount.html.

(23]

[15]

