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Abstract

Readers of programs have two main sources of domain
information: identifier names and comments. When func-
tions are uncommented, as many are, comprehension is al-
most exclusively dependent on the identifier names. Assum-
ing that writers of programs want to create quality identi-
fiers (e.g., include relevant domain knowledge) how should
they go about it? For example, do the initials of a concept
name provide enough information to represent the concept?
If not, and a longer identifier is needed, is an abbreviation
satisfactory or does the concept need to be captured in an
identifier that includes full words?

Results from a study designed to investigate these ques-
tions are reported. The study involved over 100 program-
mers who were asked to describe twelve different functions.
The functions used three different “levels” of identifiers:
single letters, abbreviations, and full words. Responses al-
low the level of comprehension associated with the different
levels to be studied.

The functions include standard algorithms studied in
computer science courses as well as functions extracted
from production code. The results show that full word iden-
tifiers lead to the best comprehension; however, in many
cases, there is no statistical difference between full words
and abbreviations.

1 Introduction

Conventional wisdom says that choosing meaningful
identifier names improves the ability of the next engineer
to comprehend the code [6]. This paper seeks to study
the effect that identifier names have on the comprehension

of source code. The results help to understand the impact
certain choices for identifier construction have on program
comprehension.

The primary hypothesis of the study is that full English-
word identifiers lead to better source code comprehension.
Two other hypotheses are investigated: first, increased work
experiences and schooling lead to a better ability to com-
prehend source code; thus, lowering the value of identifier
quality. Second, in support of related studies [10], gender
plays a role in confidence but not comprehension.

One motivation for this study comes from a project
who’s aim is to build tools that allow a programmer to easily
assess aspects (e.g., quality) of a large software system. A
key focus of these tools is on the identifiers and comments.
Although comments tend to be written in a natural language
such as English, the same is not necessarily true of identi-
fiers. In order to build tools that exploit high quality identi-
fiers, it is first important to understand the characteristics of
identifier quality. In order to ascertain the effect of identifier
names on comprehension, this paper reports on a study that
investigates the impact of three levels of identifier quality:
full words, abbreviations, and single letters. If using full
words is a clear advantage over abbreviations, then it will
be easier to build tools that extract information from identi-
fiers, for example, through the use of a standard dictionary.
However, if abbreviations of full words give an engineer as
much information, then tools that consider identifiers must
be designed to treat abbreviations.

The study involved over 100 computer scientists includ-
ing both students and professionals. The size and variety of
participants make this study unique. Subjects were asked
to describe one of three variants of twelve functions (shown
one at a time). The variants differed only in the quality of
the identifiers used. Each participant was asked to provide a
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free-form written description of the function and a measure
of their confidence in understanding the source code. The
description provides a qualitative measure of comprehen-
sion without leading the subject to possible answers, while
the confidence rating provides a quantitative measure of the
subject’s understanding. In order to access a wide variety of
subjects, the study was conducted over the web and email
was used to solicit participation. One hundred twenty-eight
people participated, ninety-six professionals and thirty-two
students.

The remainder of the paper first presents a description of
the experimental setup in Section 2, followed by necessary
background information in Section 3. This is followed by a
discussion of the results and then related work in Sections 4
and 5. Finally, Section 6 summarizes the paper and suggests
some places for future work.

2 Experimental Setup

This section describes the experimental design. It first
describes the process used to select the twelve functions
used in the study. Next the applet used to collect the data
and then a summary of the subjects demographic data is pre-
sented. Finally, the process of readying the data for analysis
is discussed.

2.1 Source Code Selection

The first step in constructing the study was to determine
the twelve functions to be used. Two kinds of functions
were of interest: algorithms and snippets. The algorithms
include “text book” functions such as binary search and
quick sort. The snippets were functions taken from produc-
tion code and included, for example, finding the best move
in the gamego and summing all the debits in an account.
Sources for these functions include several algorithm’s text
books and code available on the world wide web. The initial
search turned up about 50 candidate functions. From these,
six algorithms and six snippets where chosen for inclusion
in the study. The functions ranged in size from 8 to 36 lines
of code. Since the focus of the study is on identifiers, com-
ments were omitted from the code the subjects viewed. All
information about the purpose of the code came from its
structure and its identifiers.

The next task was to create the three variants of each
function. First, the full (English) word identifier variantof
each function was constructed. The identifier names came
from the original programmers if the code had been writ-
ten with English word identifiers or were chosen by the au-
thors to be particularly meaningful. The single letter vari-
ants were created by selecting the first letter of each word
in the full-word identifier.

Finally, the abbreviation variants were created based on
the full-word variants. Most of the identifiers had common
abbreviations (e.g., count→ cnt, length→ len). Ten of
the 63 identifiers (e.g., current board, target, and
credit) had no conventional abbreviation (as known to
the authors). In these cases a professional programmer un-
related to the experiment was asked to abbreviate the 10
identifiers. Five of the 10 were the same abbreviations as
the authors proposed, three contained less information (e.g.,
most frequent letter was abbreviatedmfl rather
thanmfreqlet). Finally, two abbreviations had minor
differences (scores was abbreviated asscrs rather than
scs andcredit was abbreviatedcdt rather thancred.
To avoid experimenter bias, the professional programmer’s
abbreviation were used in the cases of disagreement.

To illustrate the difference in the variants, Figure 1 shows
the three variants of the Sieve of Eratosthenes. The top
function is the single letter variant. It is expected that com-
prehension using this variant will be worse than the other
variants; thus, this variant is used to provide a baseline.
The middle function includes abbreviated identifiers (e.g.,
isPriNum). Finally, the bottom function uses full word
identifiers (e.g., isPrimeNumber).

2.2 Data Collection

The experiment was administered over the web to allow
a geographically diverse group of subjects to take part. A
Java applet was used as the user interface to control the
viewing of the source code (e.g., to prevent subjects from
making use to their browser’s “back” button to view the
code multiple times). In addition, the applet made the col-
lection of timing data easier. The applet consisted of three
main parts: collecting demographic information, presenting
the source code and questions for the twelve functions, and
collecting final participant feedback.

Subjects began with the a demographics page, which col-
lected the participant’s years of computer science schooling,
years of computer science related work experience, the title
of the last computer science position held, age, and gen-
der. Because the study involved reading code written in the
programming languages C, C++, and Java, each subject was
also asked to provide their comfort level with each language
on a scale of 1 to 5, where 1 indicated low comfort and 5
indicated high comfort.

Each function shown in the middle part of the experi-
ment involved viewing two screens. The first screen dis-
played the source code of the function. Participants were
asked to spend one to two minutes reading the code and
not to write anything down regarding the code. The sec-
ond screen, shown in Figure 2, asked subjects to describe
the purpose of the function and to rate their confidence in
their understanding of the source code. These two pieces
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Single Letter Variant

void fXX(bool pn[ ], int l)
{
int i, f, p;

pn[0] = false;
pn[1] = false;
for (i = 2; i < l; i++)

pn[i] = true;

for (p = 2; p < l; p++)
if (pn[p])

for (f = p; f * p < l; f++)
pn[f * p] = false;

}

Abbreviatted Variant

void fXX(bool isPriNum[ ], int len)
{
int idx, fac, pri;

isPriNum[0] = false;
isPriNum[1] = false;

for (idx = 2; idx < len; idx++)
isPriNum[idx] = true;

for (pri = 2; pri < len; pri++)
if (isPriNum[pri])

for (fac = pri; fac * pri < len; fac++)
isPriNum[fac * pri] = false;

}

Full Word Variant

void fXX(bool isPrimeNumber[ ], int length)
{
int index, factor, prime;

isPrimeNumber[0] = false;
isPrimeNumber[1] = false;

for (index = 2; index < length; index++)
isPrimeNumber[index] = true;

for (prime = 2; prime < length; prime++)
if (isPrimeNumber[prime])

for (factor = prime;
factor * prime < length; factor++)

isPrimeNumber[factor * prime]
= false;

}

Figure 1. The three variants of the function
that uses the Sieve of Erathosthenes to find
prime numbers.

of information were used as the comprehension measures.
(As an aside, this confidence rating was misinterpreted by a
few subjects, who wrote “I don’t know” as the description
and gave it a confidence of 5, indicating they were very sure
they did not know what the code did; however, most treated
their confidence as intended.)

To ensure that each participant saw an even distribution
of the three different variants and to ensure that for each
question, each variant of the code was seen by a similar
number of participants, the sequence of variants shown was
randomly taken from three possible sequences. The se-
quences were created using Latin Squares to ensure that
each subject encountered an equal number of each type of
question in a balanced fashion. From the data collected, the
actual number of responses for each variant was 357, 364,
and 366, which indicates that good balance was achieved.

The final screen, seen only by subjects who completed
all twelve questions provide space for free-form comments.
Participants volunteered such information as their opinion
of particular questions, their frustration with the choiceof
identifier names, and the amount of time that has passed
since they last had to read code. One subject observed,
“Nice survey. Programs are indeed inherently unintelligi-
ble especially for the unexperienced eye.”

2.3 Subject Demographics

The subjects who participated in this study include un-
dergraduate and alumni of Loyola College (a convenience
sample). In addition, email requests were sent to other in-
stitutions’ alumni, professional groups, etc. In all 128 par-
ticipants answered at least one question. Sixty-four others
filled in only the demographic information. About 25 per-
cent of the participants can be categorized as students based
on the number of years of computer science schooling. The
average age of the participants was 30 years with a standard
deviation of 11. The average number of years worked was
7.5 with a standard deviation of 8.8. Ten percent of the par-
ticipants were female. Finally, the average comfort subjects
reported for C, C++, and Java on a scale of 1 to 5, were 3.3,
3.4, and 3.6, respectively.

The number of subjects that did not complete the study,
known as drop-outs, is depicted in Figure 3. The figure
reports the number of participants that stopped after each
question. Eighty of the 128 participants or 62.5%, answered
all twelve questions. As seen in the figure, all but one per-
son dropped out in the first half of the study.

Given that the functions were shown in same order for all
participants, more subjects evaluated the first function than
the last one. It is likely that fatigue played a part in drop-
ping out. One subject commented on fatigue multiple times
when describing the purpose of the functions. Other factors
that may have lead to dropping out include the unexpected
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Figure 2. This is a screen shot of the second screen where subj ects entered free form text to describe
the function they viewed on the previous page. Then a confiden ce of their understanding of the code
was indicated.

Figure 3. The drop-out rate reported as the
number of participants that left the study after
completing a particular question.

difficulty and the amount of time required to complete the
study.

2.4 Data Preparation

The data preparation involved three primary steps. First,
two non-numeric values from the demographic information
where replace by approximate numeric values. These two
were the age “40+” which was replaced by 45 and the age
“old” which was replaced by 60. Both replacements were
based on the profession and the number of years of work
experience.

Second, the data associated with times that seemed un-
usually short or long were examined. Most of the extremely
short times (less than 10 milli-seconds) came from prob-
lems in the interface. In these cases, which numbered 5,
the entire question was discarded for that particular subject.
Considering short times also uncovered that two subjects
who quit the study and then started over at a later time.
Since they closed their browser, they began with the first
question again and thus, could answer the questions with-
out first analyzing the code. In these cases, the second re-

sponses to the functions were discarded and the remaining
responses were merged into a single record.

Long times were observed on both screens and appeared
to indicate some kind of distraction occurring (e.g., one
subject reported that a phone call had been taken). Since
these times would adversely effect the statistics, such out-
liers were treated as missing data, which is common in sim-
ilar studies. The statistical analysis can readily handle this
missing data.

Finally, in addition to cleaning the data, the free-form
descriptions were evaluated. Two of the authors indepen-
dently evaluated each response on a 0 to 5 scale with the
following interpretations for each number:

5 yes

4 mostly yes

3 half right

2 mostly no

1 no

0 omitted an answer or reported a problem with
viewing the code

For some functions, further directions were agreed on such
as for the binary search algorithm, a description was given
a 4 if the word binary was omitted from a description that
was otherwise correct.

In total, 1087 responses were evaluated. The responses
were in random order to avoid any bias by variant. There
was agreement between the raters on 78 percent of the re-
sponses. To obtain a measure of agreement between the two
raters, aκ statistic was computed. The result of 0.71 indi-
cates substantial agreement [7].

3 Background

This section describes the statistical tests used to ana-
lyze the study responses. As the data includes repeated-
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measures and missing values, due to participants not com-
pleting all twelve questions, linear mixed-effects regression
models [14] were used to analyze the data. Such models
easily accommodate unbalanced data, and, consequently,
are ideal for analyzing the study’s results. This statistical
model allows the examination of important variables that
are associated with the various response variables.

The initial model includes explanatory variables and a
number of interaction terms. The interaction terms al-
low the effects of one variable on the response variable to
change depending upon the value of another variable. For
example, if confidence interacts with gender in a model
where rating is the response variable, then the effect of
confidence on rating depends on gender (i.e., is differ-
ent for men and women). Backward elimination of sta-
tistically non-significant terms (p > 0.05) yields the fi-
nal model. Note that some non-significant variables and
interactions are retained to preserve a hierarchical well-
formulated model [9].

The study compares the three variants within each of the
twelve questions. With three variants and twelve questions,
thirty-six comparison are made. Computing a standardt-
value for each comparison and then using the standard crit-
ical value increases the overall probability of a type I error.
Thus, a Bonferroni’s correction is made to thep-values to
correct for this multiple testing. In essence eachp-value is
multiplied by 36 and the adjustedp-value is compared to the
standard significance level (0.05) to determine significance.

4 Experimental Results

This section examines the results of the description rat-
ings and the participants confidence in their understanding
of the code in the context of the study’s hypotheses:

• Full English-word identifiers lead to better source code
comprehension

• Increased work experience and schooling lead to a bet-
ter ability to comprehend source code; thus lowering
the value of identifier quality

• Gender plays a role in confidence but not comprehen-
sion

A simple comparison of the averages for each variant, as
shown Table 4, shows the expected trend for both descrip-
tion ratings and confidence. The single letter variances have
considerablely smaller average ratings and confidences, and
the full word variants have the best averages. Unfortu-
nately, the existence of interaction between model parame-
ters makes simple statistical statements relating these values
difficult.

description rating confidence
variant sing. abbr. full sing. abbr. full
average 3.10 3.72 3.91 3.06 3.55 3.64

Table 1. Mean values calculated for descrip-
tion rating and confidence.

Given the number of explanatory variables that could ef-
fect these results, two different linear mixed-effects regres-
sion models were used to analyze the results: one simple
and one complex. The simple model includes only the ef-
fects for question and variant as well as their interaction.It
is used to get an initial impression of the data. The more
complex model is then used to assess the effects of addi-
tional explanatory variables on the response variables.

4.1 Description Ratings

The simple model for description ratings examines how
question, variant, and their interaction, hereafter denoted
question*variant, affect the description rating. Mixed ef-
fects analysis shows that all three variables are important
to the description rating. Thep-value for the interaction is
<0.0001. Consequently, the effect ofvarianton the ratings
of the descriptions differs among the questions.

Given that the interaction is significant, no trends can be
discussed forvariant or questionindependently. Figure 4
depicts the interaction. First, notice that the single letter
line is generally below the other two lines. The only excep-
tion is Question 9, quick sort. It may be that this is such
a well studied algorithm that the structure of the code was
sufficient to determine its purpose.

The three questions where circles appear in Figure 4
show significant differences (the other questions did not ex-
hibit significant differences). When more than one variant
occurs in the same circle, it means that there is no statis-
tical difference between those variants. In all three cases,
it shows that full word identifiers lead to significantly bet-
ter description ratings than single letter identifiers. In two
cases, abbreviation identifiers lead to significantly better
ratings than the single letters. There is never a statistical dif-
ference between full words and abbreviations, which means
that the subjects who viewed the abbreviations were able to
get about as much information out of the identifiers as those
that viewed the full word identifiers. However, given that
the mean of the full word description ratings were gener-
ally higher than the abbreviations, it is possible that with
a larger sample size the difference between full word and
abbreviation would be statistically significant.

One final interesting observation that comes from this
model is that two of the three questions that showed signif-
icant differences were snippets, whereas only one was an
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Figure 4. The plot shows the mean ratings
based on question and variant, which illus-
trates the interaction between these two vari-
ables. The circles indicate where significant
differences occur. If two variants are in the
same circle, there is no significant difference
between the variants. The plot shows that
significant differences occurred in questions
5, 6, and 8. In all other questions where no
circles are present, no significant differences
were observed between the three variants.

algorithm. The one algorithm, Question 8, was Sieve of Er-
atosthenes, which determines whether a number is prime.
In this function, the identifierisPrimeNumber appeared
in the full word variant, which is why it is no surprise that
the mean rating was close to 5. In the abbreviation vari-
ant, the variable was renamed toisPriNum, which along
with the structure of the code and other identifiers lead to
a mean description rating of about 4.5. In the single letter
variant, the variable was namedpn, which did not enable
as many subjects to identify the code correctly. When con-
sidering the snippet questions, these should be more simi-
lar to the kind of code an engineer would encounter when
considering a system. In this case, a third of the snippet
questions show significant improvement in description rat-
ing when full words are used for identifiers rather than sin-
gle letters. It can be concluded that the identifier names for
non-algorithms is more important than for algorithms.

The second model includes the demographic data col-
lected, the time spent analyzing the code and writing the
descriptions, variant, and question characteristics in place
of the question number. The model also includes all inter-
actions among these variables. The questions are described
using the following attributes: code type (whether snip-
pet or algorithm), number of identifiers in the code (identi-
fiers), number of identifiers squared (identifiers2), and lines
of code.

In terms of demographic information, there were signif-
icant interactions betweengenderandvariant (p = 0.0062)

Figure 5. The plot shows the mean ratings
based on genderand variant, which illustrates
the interaction between these two variables.
The circles indicate where significant differ-
ences occur. If two variants are in the same
circle, there is no significant difference be-
tween the variants.

and betweenhigh comfort in multiple programming lan-
guages andvariant (p = 0.0106). Thegender*variantin-
teraction shown in Figure 5 reveals that men produced bet-
ter descriptions for the full word variant, while for women
there was no difference between full words and abbrevia-
tions. Also, the mean score for men on the single letter
variant was 0.75 higher than for women. This may indi-
cate that informative identifier names are more important
for women than for men; but that women comprehend more
from abbreviations than men do.

In this study, ahigh comfortwas equated with a subject
indicating a comfort level of 4 or 5 in two of the three pro-
gramming languages asked about in the demographics sec-
tion. For thehigh-comfort*variantinteraction, participants
are divided into groups based oncomfort. After doing so, it
can be seen that variant has a much greater impact on those
that have less expertise. With full word identifiers, there is
only about a 0.1 difference in the means for the description
rating, where the experts have a the slight edge as shown in
Figure 6. When considering the difference in means for ab-
breviations, the gap grows to about 0.3. In the single word
variant, the gap is more than 0.6. Although both groups get
the most out of full words, this added information is more
important to the less experienced programmer. Figure 6 also
reveals that for both groups of subjects, there is no signif-
icant difference between full words and abbreviations, but
both variants are significantly better than the single letter
variant.

In terms of question characteristics, all four characteris-
tics are significant variables in the description rating.Code
type, havingp-value< 0.0001, reveals that algorithms had
higher description ratings. This could be because algo-
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Figure 6. The plot shows the mean ratings
based on comfortand variant, which illustrates
the interaction between these two variables.
The circles indicate where significant differ-
ences occur. If two variants are in the same
circle, there is no significant difference be-
tween the variants.

rithms have well known names; thus, it is easier for the
subjects to describe them, or because most participants had
seen them before, the code was easier to identify. The model
shows that description rating increases with the lines of
code, indicating that more code improves comprehension, at
least when lines of code are in the range of 8 to 36. Thelines
of code’s p-value was 0.0013. The variablesidentifiers, and
identifiers2 were also significant as well as their interac-
tions withvariant. The interactionsidentifiers*variantand
identifiers2*variant both hadp-values of 0.0001. From a
plot showing these effects, the optimal number of identifiers
for full words and abbreviations hovers around 5. Function
ratings with greater or fewer identifiers continuously de-
cline as the distance from 5 grows. The single letter variant
has a different behavior, with description rating decreasing
as the number of variables increase. Given that the single
letters, provide little domain information, it is not surpris-
ing that its trend is different.

In terms of time, the amount of time spent on the sec-
ond screen is significant, but the effect is complex. When
a plot of theratingsvs. timeon the second screen was ex-
amined, it was noticed that initially there is a rapid increase
in the ratings. At about 16,000 milli-seconds (16 seconds),
the ratings level off and thereafter tend to gradually decline
with increasing time. To account for this pattern, an indica-
tor variable is defined that is 0 before 16,000 and 1 there-
after. This allows the association betweenrating andtime
to be different before and after 16,000 ms. The model con-
tains this indicator variable, the variableln time, and the
interaction between the indicator variable andln time.

Each of these terms is statistically significant in the final
model. Using the parameters from the fitted model, the re-

sults show the same sharp increase in ratings followed by a
gradual decline. This behavior can be accounted for by the
fact that some subjects simply clicked on their (low) con-
fidence and continued on to the next question. For those
subjects that attempted to describe the function, those that
understood the code created the description more quickly
than those that did not.

There were two other significant variables in this model.
One was theconfidencesubjects had in their understanding
of the code with ap-value< 0.0001. This showed that de-
scription rating increased withconfidence. This is not a sur-
prising result since both confidence and description rating
are measures of comprehension. The other was thelength
of the description, which was calculated from the number
of characters in the description. This variable had ap-value
of 0.0077 and showed that rating increased with thelength.
This indicates that subjects who wrote longer descriptions
understood the function better.

In summary, the data supports the hypothesis that sub-
jects wrote the best descriptions for functions with full word
identifiers. It also shows that gender plays a role in the com-
prehension of code as does programming expertise when it
comes to interpreting abbreviations. In addition, it finds that
5 is an optimal number of (domain information carrying)
identifiers to be considered at one time. An interesting side
note is that work experience and schooling are not signifi-
cant factors for writing correct descriptions.

4.2 Confidence

Like the simple model for description rating, the simple
model for confidence examines howquestion, variant, and
their interaction affect the confidence reported by the sub-
ject. Confidence is an important reflection of comprehen-
sion as it reports the subjects belief in their understanding.
All three variables are important to the model. Thep-value
for the interaction is 0.0130. Consequently, the effect of
variant on the ratings of the descriptions differs among the
questions.

The interaction plot is shown in Figure 7. Subjects gen-
erally had less confidence in their comprehension of code
with single letters than the other variants, and most often the
highest confidence came from code with the full word iden-
tifiers. However, significant differences only occurred in
four questions. In these questions, the significant difference
came between single letters and full words. It is interest-
ing to note that the three questions with significant differ-
ences in description rating also had significant differences
in confidence, which may indicate that these two response
variables were measuring similar information, namely com-
prehension.

The expanded model for confidence began with the same
explanatory variables as that for description rating: the de-
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Figure 7. The plot shows mean confidence
values based on question and variant, which
illustrates the interaction between these two
variables. The circles indicate where signifi-
cant differences occur. If two variants are in
the same circle, there is no significant differ-
ence between the variants. The plot shows
that significant differences occurred in ques-
tions 4, 5,6, and 8. In all other questions, no
significant differences were observed.

mographic data, the time spent analyzing the code and writ-
ing the descriptions, variant, and question characteristics.
However, this model found different significant variables.

In terms of demographic information, significant vari-
ables are the number ofyears worked(p = 0.0138), number
of years in school(p < 0.0001), andgender(p = 0.0154).
The data reveal that confidence increases both with num-
ber of years workedand number ofyears in school. Nei-
ther of these two results is unexpected. When considering
gender, females rate their confidence 0.4 lower than males.
This pattern has been observed before [10]. At first glance,
it may appear that there are too few female participants to
draw such conclusions; however, in order for a statistical
different to occur, a very large difference must be observed,
making the result noteworthy.

In terms of question characteristics, two of the four char-
acteristics used were significant:code type(p = 0.0004)
andnumber of identifiers(p < 0.0001). Lines of code was
not found to be significant. It is observed that algorithms
lead to higher confidence and more identifiers leads to lower
confidence. This second conclusion is rather unintuitive. It
is difficult to say why this occurred.

In terms of time, the time spent on the first screen analyz-
ing the code and time spent on the second screen answering
the questions were both significant. However, the relation
is non-linear. Confidence increases as the time spent on the
first screen increases from 0 to about 15,000 milli-seconds.
After that point confidence slowly decreases as time in-
creases. This indicates that there is an optimal amount of

time that one can spend analyzing source code and after
than point there are diminishing returns. The same pattern
occurs on the second screen; however, the cut-off time is
16,000 milliseconds, rather than 15,000. Again, some time
is necessary, but too much time indicates lower confidence.

Two other variable were found to be significant:de-
scription length(p = 0.0012) anddescription rating(p <

0.0001). Confidence increases with both increaseddescrip-
tion lengthanddescription rating. The increase in descrip-
tion length shows that subjects who have more to say are
more confident. When considering description rating, it is
not surprising that it is a significant factor since confidence
is a significant factor in the description rating model.

In summary, the hypothesis that confidence correlates
with years of experience is supported by the data. The hy-
pothesis that graduated participants do better than those yet
to graduate is supported by the fact that more schooling
leads to higher confidence. Also, gender does play a role in
confidence, with women generally having lower confidence
than men.

4.3 Summary of Results

Although description rating and confidence are highly
correlated, the models generated for each provide differ-
ent information and insights. For example, work experi-
ence and years of schooling play a significant role in confi-
dence, but not in description rating. Although gender plays
a role in both models, that role is different. In terms of con-
fidence, it is shown that women rate their confidence lower
than men. However, in terms of description rating, men
perform significantly higher on full words than on abbrevia-
tions, where as there is no statistically significant difference
observed for women. Finally, subjects tend to have higher
ratings and higher confidence in their ability to understand
algorithms than the snippets of production code.

4.4 Threats to Validity

In any empirical study, it is important to consider threats
to validity (i.e., the degree to which the experiment mea-
sures what it claims to measure). There are four types of
validity relevant to this research: external validity, internal
validity, construct validity, and statistical conclusionvalid-
ity.

External validity, sometimes referred to as selection va-
lidity, is the degree to which the findings can be generalized
to other organizations or settings. In this experiment, se-
lection bias is possible as the selected functions and partici-
pants may not be representative of those in general; thus, re-
sults from the experiment may not apply in the general case.
Careful selection of the functions mitigates the impact their
selection. Given the demographic data, the subjects seem

8



fairly representative of the computer science community at
large.

Second is the threat to internal validity: the degree to
which conclusions can be drawn about the causal effect of
the explanatory variable on the response variable. Statistical
associations do not imply causation. Though, given the ex-
perimental setup that subjects are assigned to questions, one
should be able to infer that differences between the question
variants are due to the different types of identifiers. One
threat comes from the loss of participants in the beginning
of the study, known as attention effects. Given that there are
several reasons an individual may have discontinued partic-
ipation in the study, it is thought to be unlikely that the loss
is systematically correlated with conditions. Other potential
threats to internal validity, for example, history effectsand
subject maturation [11] are non issues given the short dura-
tion of the experiment. Selection effects were addressed by
gathering a representative sample of programmers, and by
choosing functions that represented various types of code.
Finally, it is possible that exposure to early questions hadan
effect on responses to later questions. No evidence of this
was found in the participants responses.

Construct validity assesses the degree to which the vari-
ables used in the study accurately measure the concepts
they purport to measure. As human assessment of qual-
ity is rather subjective, it is possible that some other aspect
of the code assessed affected participants’ responses. The
parallels between the models for the description rating and
confidence suggest that this is not a serious concern.

Finally, a threat to statistical conclusion validity arises
when inappropriate statistical tests are used or when vio-
lations of statistical assumptions occur. The models ap-
plied to this data are appropriate for analyzing unbalanced
repeated-measures data, so that the conclusions drawn from
the statistics should be valid.

5 Related Work

There is ongoing interest in naming identifiers. Al-
though educators tend to stress the importance to meaning-
ful identifier names, this is not universally valued. Sneed
observes that “in many legacy systems, procedures and
data are named arbitrarily· · · programmers often choose
to name procedures after their girlfriends or favorite sports-
men” [12]. However, simply because un-informative iden-
tifiers may exist, does not mean that the code using them
is of good quality. Caprile and Tonella state that “identifier
names are one of the most important sources of information
about program entities” [4].

Given the importance of identifier naming, several re-
search projects have considered the issue of identifier nam-
ing conventions. Naming conventions are important be-
cause “studies of how people name things (in general not

just in code) have shown that the probability of having two
people apply the same name to an object is between 7%
and 18%, depending on the object” [2]. Anquetil and Leth-
bridge [1] define what it means to have a “reliable nam-
ing convention”. Deissenböck and Pizka [5] create a formal
model for concepts and names which is used to determine
reliable names. Caprile and Tonella [3] use a grammar to
define the naming convention and use the grammar to find
semantic meaning in the words. In addition to naming con-
ventions, the informativeness of identifiers has been exam-
ined by Takang et al. [13].

Anquetil and Lethbridge hypothesized that a “naming
conventionis reliable if there is an equivalence between the
name of the software artifacts and the concepts they imple-
ment” [1]. This hypothesis was studied through the exam-
ination of record definitions. In the legacy code they stud-
ied, it was evident that a naming convention existed because
records with similar names had similar fields.

Deissenböck and Pizka create a formal model based on
bi-jective mappings between concepts and names. The idea
is that within a given program a concept should always be
referred to by the same name. They introduce an “iden-
tifier dictionary” and provide a tool that will help main-
tain consistent naming throughout the lifetime of a software
project [5]. Deissenböck and Pizka argue that naming con-
ventions are needed to enforce consistency and to provide
guidelines about the mechanics of turning a concept into a
name. With such guidelines, names should contain enough
information for an engineer to comprehend the precise con-
cept.

Caprile and Tonella analyze function identifiers by con-
sidering their lexical, syntactical, and semantical structure.
They break identifiers into word segments and then use a
grammar to find semantic meaning in the words. By fol-
lowing a grammar, Caprile and Tonella anticipate improve-
ments in the readability, understandability and, more gener-
ally, maintainability of a program [3].

Others have attempted to determine the informativeness
of identifiers including Takang et al. [13]. The Takang study
compared abbreviated identifiers to full-word identifiers and
uncommented code to commented code. The abbrevia-
tions were created from the first two letters of the English
word (e.g.,CalculateNumericScorewas abbreviated
asCaNuSc). Given that it may be difficult to recognize the
base word in the abbreviation, these abbreviations are more
similar to the single letter identifiers used in the study re-
ported in this paper. Subjects for the study consisted of first
year students, which means that results may not be applica-
ble to professionals since none participated in the study. To
assess understanding of the code, multiple choice test scores
and participant’s subjective scores were used. The objec-
tive test scores showed that commented programs are more
understandable than non-commented programs. The sub-
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jective scores showed that programs that contain full word
identifiers are more understandable than those with abbre-
viated identifiers; however, nothing can be concluded about
more informative abbreviations. Also only a single program
was used in the analysis, so it is more difficult to generalize
the results to other types of programs in other domains. The
study was unable to show any improvement from both full
word identifiers and comments.

6 Summary and Future Challenges

The study described in this paper shows that better com-
prehension is achieved when full word identifiers are used
rather than single letter identifiers as measured by descrip-
tion rating and confidence in understanding. It also shows
that in many cases abbreviations are as useful as the full
word identifiers, although this is more true for women than
for men. Gender also impacts confidence, where men gen-
erally report higher confidence. In addition, it shows that
work experience and education play an important role in an
engineer’s confidence in understanding a piece of code, but
not in his ability to write description of what that code is
accomplishing.

Given the results of the study, it is clear that tools assess-
ing identifier quality need to be able to make use of abbre-
viations. A key next step for such tools is to automatically
associate meanings with abbreviations. This might be pos-
sible using machine learning techniques [8] to select key
components from the documentation based on higher-level
concepts.
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