
AN EMPIRICAL COMPARISON OF TECHNIQUES FOR EXTRACTING
CONCEPT ABBREVIATIONS FROM IDENTIFIERS

Henry Feild David Binkley Dawn Lawrie
Loyola College Loyola College Loyola College
Baltimore MD Baltimore MD Baltimore MD

21210-2669, USA 21210-2669, USA 21210-2669, USA
hfeild@cs.loyola.edu binkley@cs.loyola.edu lawrie@cs.loyola.edu

Abstract

When a programmer is faced with the task of modifying
code written by others, he or she must first gain an un-
derstanding of the concepts and entities used by the pro-
gram. Comments and identifiers are the two main sources
of such knowledge. In the case of identifiers, the meaning
can be hidden in abbreviations that make comprehension
more difficult. A tool that can automatically replace abbre-
viations with their full word meanings would improve the
comprehension ability (especially of less experienced pro-
grammers) to understand and work with the code. Such a
tool first needs to isolate abbreviations within the identi-
fiers. When identifiers are separated by division markers
such as underscores or camel-casing, this isolation task is
trivial. However, many identifiers lack these division mark-
ers. Therefore, the first task of automatic expansion is sep-
aration of identifiers into their constituent parts. Presented
here is a comparison of three techniques that accomplish
this task: a random algorithm (used as a straw man), a
greedy algorithm, and a neural network based algorithm.
The greedy algorithm’s performance ranges from 75 to 81
percent correct, while the neural network’s performance
ranges from 71 to 95 percent correct.

Keywords: neural network, software maintenance, code
comprehension, software engineering

1 Introduction

Identifiers, which represent the defined concepts in a pro-
gram, account for, by some measures, almost three quar-
ters of source code [4]. The makeup of identifiers plays a
key role in how well they communicate these defined con-
cepts. Thus, they aid in the transfer of understanding from
a current programmer to subsequent programmers. In ad-
dition, tools that attempt to assist engineers when perform-
ing source code analysis (e.g., for program comprehension,
maintenance, or evolution) will be more successful if the
tool can map program identifiers to domain level concepts
(for example those appearing in the documentation).

Motivation for the importance of identifiers in trans-
ferring knowledge comes from several previous studies.
For example, Deißenböck and Pizka observe that “Re-
search on the cognitive processes of language and text un-
derstanding shows that it is the semantics inherent to words
that determine the comprehension process” [4]. Thus, they
conclude that the importance of identifier names is crucial
to program comprehension [4]. A second motivation comes
from the work of Caprile and Tonella, who observe that
“Identifier names are one of the most important sources of
information about program entities” [3].

Furthermore, Rilling and Klemola observe that “In
computer programs, identifiers represent defined concepts
[where] identifier density corresponds to comprehension
cost” [14]. Knuth noted that descriptive identifiers are a
clear indicator of code quality and comprehensibility [8].
As a measure of how much of a program is devoted to iden-
tifiers, Deißenböck and Pizka report that in the source for
Eclipse (about 2 MLoC) 33% of the tokens and 72% of
characters are devoted to identifiers [4].

To understand a program, an engineer must map the
program’s identifiers to the concepts they represent. Jones
notes that a variety of different kinds of character sequences
are used in source code identifiers [6]. Some are com-
plete words or phrases, some abbreviated forms of words or
phrases, while others have no obvious association with any
known language. Studies have found that people’s perfor-
mance in processing character sequences can vary between
different kinds of sequences [10]. For instance, frequently
used character sequences (i.e., dictionary words) are recog-
nized faster and are more readily recalled than rare ones [6].
Thus, the more meaningful the identifiers of a program, the
easier it is to map them to appropriate concepts. As an ex-
ample, comparepqins() with priority queue insert().

When performing maintenance on code written by
others, transfer of the concepts referred to by the identi-
fiers is of great importance. Those identifiers comprised
completely of natural language words and well known ab-
breviations lead to faster comprehension than those using
(unknown) abbreviations or those that are completely non-
sensical [6, 10]. The latter increase comprehension cost.

Given the presence of abbreviations (in particular
those whose concepts are unknown) the long term goal of
this work is to use machine translation techniques [11] to
map these abbreviations to domain level concepts. This
should enable all readers of the code to understand the de-
fined concepts in the program. Several steps are required to
attain this goal: first, the identifier must be divided into its
constituent “words.” Then any abbreviations must be iden-
tified, and finally the concepts must be extracted (typically
from the internal and external documentation).

The work presented in this paper focuses on the first
step. Although many identifiers include easily identifiable
clues in the form of camel-casing or underscores, many do
not. This work discusses two different techniques for ex-
tracting the constituent words of the later class. The first
is a greedy algorithm that searches for longest substrings.
The second implements a neural network to predict split-
ting points. A random algorithm is also presented and used
to generate base line output. An empirical comparison of
the three techniques is reported.

The remainder of this paper consists of a description
of the three techniques in Section 2. An empirical study is
then presented in Sections 3 and 4. The final two sections
discuss related work and a conclusion.

2 The Techniques

This section first introduces some terminology regarding
identifiers before describing the three splitting techniques
and discussing some example output. Identifiers come in
a variety of forms. Some consist of a single concept (e.g.,
hash); others may contain several concepts separated by
somedivision marker(e.g., hash table or hashTable);
many, however, consist of multiple concepts with no di-
vision markers (e.g., hashtable) or some mixture thereof
(e.g., hashtable entry).

The following terminology is used in this paper: word
breaks (e.g., underscores and camel-casing) are referred to
asdivision markers, while the string of characters between
division markers and the endpoints of an identifier are re-
ferred to ashard words. Some hard words directly identify
a concept (e.g., those that exist in the dictionary). Others
include multiple parts (and sometimes multiple concepts).
These parts are referred to assoft words. Thus, a hard word
consists of one or more soft words. In the later case, the ab-
sence of division markers makes the individual soft words
(concepts) difficult to extract.

Take, for example, the identifierhashtable entry.
This identifier consists of one division marker (an under-
score) and, thus, two hard words,hashtable and entry.
The hard wordhashtable is composed of two soft words –
hash andtable, while the hard wordentry is composed of
a single soft word.

In order to test the three algorithms, it is necessary to
have a test oracle. In essence, this data is a list of pairs that

each include the original input hard word and the properly
divided output. For example, the test data includes the pair

hashtable hash-table

where a hyphen is used to indicate where division markers
should occur. Construction of the oracle data used in the
experiments is described in Section 3.

The remainder of this section describes the three tech-
niques:arandom algorithm, agreedy algorithm, and an al-
gorithm based on anartificial neural network. The goal of
each is to identify all of the soft words within an identifier.

2.1 The Random Algorithm

The first technique is the simplest of the three. It ran-
domly divides a hard word into soft words with the same
frequency as in the oracle data. For example, consider a
data set consisting of a single ten character hard word iden-
tifier where the oracle inserted a single division marker.
This identifier has nine inter-character locations into which
a division marker can be inserted. Given a single division
marking in the oracle data, the random algorithm would
have a one in nine chance of inserting a division marker
between each pair of characters.

The random algorithm is used as a kind of straw man
and allows for the comparison of relative performance of
the other algorithms. To understand this use of the random
algorithm, consider the performance of algorithmA on two
data setsD1 andD2. If A correctly divides 76% ofD1 and
80% ofD2, then using an absolute scaleA does better on
D2. Now consider the situation assuming the random al-
gorithm correctly divides 50% ofD1 and 70% ofD2. One
conclusion form this is thatD2 is easier. Using a scale rel-
ative to the random algorithm’s performance,A does com-
paratively better onD1. Thus, the random algorithm forms
an alternative base-line useful for measuring algorithm per-
formance when comparing results on different data sets.

2.2 The Greedy Algorithm

The second technique implements a greedy algorithm that
employs three lists:dictionary words, known abbrevia-
tions, and finally, borrowing an idea from Information Re-
trieval (IR), astop list. The implementation uses the pub-
licly available dictionaries that accompany the Linux spell
checkerispell (Version 3.1.20) (45,292 entries). It also
uses a list of common abbreviations extracted from several
programs and the authors experience.

Abbreviations include domain abbreviations (e.g., alt
for altitude) and programming abbreviations (e.g., txt for
text) (261 entries). At present this list is small as it was
conservatively constructed to include only truly common
abbreviations. One area of future work is to look at the abil-
ity of IR classification techniques to automatically extract
program specific abbreviations (and tie them to concepts in
the documentation) [9].

Finally, a stop-list is used to omit words not thought
to bring useful information. These include keywords (e.g.,
while), predefined identifiers (e.g., NULL), library func-
tion and variable names (e.g., strcpy anderrno), and
all identifiers that consist of a single character (4,573 en-
tries). This list is large because it includes all function
names from several common libraries (e.g., libc).

The greedy algorithm begins by performing a lookup
on each hard word. Those on one of the lists are returned
as a single soft word. The remaining hard words are as-
sumed to be composed of multiple soft words. The search
for these soft words is a recursive procedure that begins by
looking for the longest prefix and the longest suffix that is
on a list. The two are symmetric. In the case of the longest
suffix, successive characters are removed from the begin-
ning of the hard word until a string on one of the lists is
encountered (or the string becomes empty).

If the string does not become empty, both searches are
then recursively called on the remaining characters. Upon
return the result from the call (prefix or suffix) returning the
higher ratio of soft words found on one of the lists to total
soft words is returned. At each return, a division marker is
inserted.

2.3 The Neural Network

The third approach uses an artificial neural network to split
hard words into soft words. Traditionally, there are three
layers of “neurons” ornodes– the input, hidden, and out-
put layer. The input and output of each node (and thus the
network) is numeric. Every node in the input layer is con-
nected to every node in the hidden layer, each of which is
connected to every node in the output layer. Every connec-
tion is weighted. This weight is multiplied by the value of
the sending node and then summed with every other node
connected to the receiver node. This sum is then passed into
an activation function which will cause the receiving node
to “fire” or “not fire”, similar to a human neuron. The num-
ber of input and output nodes is determined by the problem
being solved. Experimentation found that the optimal num-
ber of nodes in the hidden layer was about two-thirds the
number of nodes in the input and output layers combined.

The experiments made use of the Fast Artificial Neu-
ral Network (FANN) library [12]. The resulting networks
aresymmetric, meaning the value of each node in the net-
work falls between -1.0 and 1.0. To “learn” weight values,
a FANN network is “trained” using one of several avail-
able feedback algorithms from within the FANN library.
The networks used in this study implemented theimproved
resilient back propagation algorithm, which performs best
for many problems [12]. The training process makes mul-
tiple passes over the training data to tune the weights. Each
pass is referred to as anepoch. The networks presented
here are trained over the course of 1100 such epochs.

To pass hard words into the network, they must first be
encoded as numeric values. Similarly, the numeric output
from the output layer must be interpreted. In more detail,

the input hard word is first converted to lower case. The
ASCII values for each character is then scaled to the range
-1.0 to 0.5 and all non-alphabetic characters are mapped
to 1.0. The gap between the character ‘z’ and the non-
alphabetic characters helps to identify separators (such as
digits) within hard words. Finally, each output node in the
networks represents the position between the input char-
acters. For instance, the first output node corresponds to
the position between the first and second characters of the
input. The value for each node in the output layer is the
probability that the position it represents should containa
split. To interpret these probabilities, athresholdis used.
If the output value is greater than the threshold, then a di-
vision marker is inserted. The threshold that produces the
best results is different for each network and is determined
using the success criteria discussed in Section 3.

Initially, a single network was created to split all hard
words (up to 25 characters in length). However, follow-
ing the work of Pomerleau, multiple specialized neural net-
works based on hard word length were created [13]. Thus,
the algorithm for splitting identifiers is essentially a case
statement where each case employs a neural network spe-
cialized to a given hard-word length. The original network
(that accepts arbitrary length inputs up to 25 characters) is
used as a default when one of the length-specific networks
is unavailable. This occurs, for example, when insufficient
training data of a particular length exists. Although each
“network” represents a collection of networks (one for each
input length) for presentation simplicity each is referredto
as a “network”.

The training data for a neural network is typically di-
vided into three sets: atraining set, cross-validation set,
andtest set[5]. The first two are used during the training
of the networks, whereas the last set is used at the very end
of the training process to test the network and should only
be used once to report the success of the final, trained net-
work. For each neural network studied in Section 4, the
training data was divided into a training corpus and cross-
validation corpus using the standard 90% / 10% split [7].
The test phase made use of the test oracle creation process
as described in Section 4.

2.4 Examples

A general understanding of the differences between the out-
put from the neural networks and the greedy algorithm is
useful in gaining some intuition for the two and for inter-
preting the results of the next two sections. Figure 1 shows
the result of splitting four different identifiers using both
techniques.

In general, when the greedy algorithm performs badly
it is due to limitations in the abbreviation list. For ex-
ample, the greedy algorithm would have correctly split
trustdom haddom (domain) been on the list of abbre-
viations. The neural network’s splits depend heavily on the
training set and the settings used during training. The exact

Split Identifier
Un-split Neural Greedy
Identifier Network Algorithm
Both Acceptable
rcvptr rcv ptr rcv ptr
Only Network Acceptable
trustdom trust dom trustdo m
Only Greedy Algorithm Acceptable
listlength listlength list length
Neither Acceptable
sockaddr sockaddr sockaddr

Figure 1. Split identifiers produced by the greedy algorithm
and neural network techniques.

causes for unacceptable splits are hard to pinpoint – more
training data and a longer training time may have prevented
these misplaced and absent splits, but there is no guarantee.

3 Experimental Setup

This section describes the source code used in the study.
In particular it describes the extraction of the identifiers
from the code and the generation of a testoracleused both
to train the neural network and to evaluate the three ap-
proaches.

The source base used in the experiments includes
186 programs containing 26MLoC of C, 15MLoC of C++,
7MLoC of Java, and 21KLoC of Fortran. To produce
the evaluation oracle and the neural network training data,
4,000 identifiers were randomly chosen from the 746,345,
and division markers were added by four programmers.

The collection of identifiers was then divided into
hard words using the original division markers. Duplicates
and hard words with conflicting splits were removed. In
the sequel, three sets of hard words are experimented with:
da, the set of all hard words, andd1 andd2, two of the
four programmer-split sets. After the creation of the oracle
data, five separate neural networks were trained, one for
each data set. The resulting networks discussed here are
referred to asna, n1, andn2, trained onda, d1, andd2
respectively.

The output of the three techniques was compared with
the expected output generating a statistic used to quantify
success. It counts the number of exact matches between the
actual and expected output.

4 Experimental Results

First, the three algorithms are compared in “head-to-head”
in Figure 2. Because a neural network is dependent on the
training data, three rows are included for each data set. For
example, the first row in each grouping is the neural net-
work trained onda (all the data). Each entry in the table is

Data Set Algorithm Performance
on Network

Network {na,n2,n1} Greedy Random
da onna 78.12% 75.69% 54.59%
da onn2 70.96% 75.69% 54.59%
da onn1 71.56% 75.69% 54.59%
d2 onna 82.04% 81.31% 61.22%
d2 onn2 88.12% 81.31% 61.22%
d2 onn1 77.04% 81.31% 61.22%
d1 onna 89.99% 77.96% 78.45%
d1 onn2 86.09% 77.96% 78.45%
d1 onn1 95.14% 77.96% 78.45%

Figure 2. Correctness rates for three techniques using se-
lected datasets.

the percentage of correctly split identifiers. For each neural
network, the best percentage over all thresholds is used (the
influence of threshold is discussed later in this section).

From the table, using the random algorithm’s perfor-
mance as a measure of data set difficulty, the data sets get
easier to split further down the table. Though not by a large
margin, the random algorithm actually does better then the
greedy algorithm on data setd1. At the same time, the
neural networks achieve the highest average correctness on
this data set. An investigation into the cause of this be-
havior uncovered the following: data setd1 has the fewest
splits. Furthermore, these splits were inserted followingan
intuitive understanding of the identifiers. It appears thatthe
networkn1 is doing a good job of capturing this intuitive
understanding. On the other hand, the greedy algorithm
does not have in its lists the abbreviations uncovered by the
intuitive splitting and thus does not performs as well.

Comparing the neural networks and the greedy algo-
rithm, the neural network out “scores” the greedy algorithm
in six of the nine runs as can be seen in Figure 2. However,
four of these are by less than 5%. In all cases, the neural
network’s highest correctness comes from the data set on
which it was trained.

The correctness scores of a neural network are depen-
dent on a threshold (the value used to determine the binary
value of the output nodes in the network). The values in
Figure 2 represent the maximal correctness. To better un-
derstand the influence of threshold, Figure 3 shows the re-
sults for the full range of threshold values. Each graph plots
correctness, the percentage of identifiers correctly split(ac-
cording to the oracle), versus the neural network’s thresh-
old value, which runs between -1 and 1, with a 0.005 step.
The greedy and random algorithms are not affected by the
threshold; thus, their correctness rates appear as horizontal
lines.

The graphs for a neural network typically follow an
inverted parabolic curve, which makes identification of the
threshold that produces the maximal correctness possible.
This pattern is shown in Figure 3a, where the maximum

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
or

re
cn

es
s

(P
er

ce
nt

)

Threshold

Threshold vs. Correctness : da on na

Neural Network
Greedy Algorithm

Random Algorithm
 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
or

re
cn

es
s

(P
er

ce
nt

)

Threshold

Threshold vs. Correctness : d1 on n2

Neural Network
Greedy Algorithm

Random Algorithm
 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
or

re
cn

es
s

(P
er

ce
nt

)

Threshold

Threshold vs. Correctness : d2 on n1

Neural Network
Greedy Algorithm

Random Algorithm

(a) (b) (c)

Figure 3. Correctness rates for selected networks and the greedy and random algorithms.

value occurs toward the middle of the graph. Figure 3b
shows an exception where the maximum appears on the far
right. This is interesting because the far right corresponds
to theidentity transformation– a transformation that intro-
ducesnodivisions.

The comparison from Figure 2 considers the maximal
correctness for each neural network. For each dataset, the
remainder of this section takes a closer look at the impact of
threshold. Starting with data setda, as shown in Figure 2,
na outperforms (in order) the greedy algorithm, followed
by n1, n2, and finally the random algorithm. Looking at
the graph in Figure 3a,na actually does best from threshold
values from -0.385 to 0.880. It remains better than the ran-
dom algorithm for thresholds above -0.725. Below -0.725
the low threshold means that the probably of inserting a di-
vision marker is so high that the correctness rate plummets.
Being trained onda is doubt part ofna’s success. Recall
thatda is a combination of all four oracle data sets; thus,
it contains artifacts and biases from four splitting methods.
Thena network, therefore, has been trained to pick up of
these four techniques, making it a more generalized net-
work. However, the other two networks have only been
trained using data generated using a single method. Thus,
when presented with one of the other data sets, these spe-
cialized networks do not perform as well.

Next consider data setd1. Unsurprisingly, as seen in
Figure 2,n1 performs best, followed byna, n2, the ran-
dom algorithm, and finally the greedy algorithm. Visible
in Figure 3b the identity transformation, with a correctness
rate of 86%, actually outperforms the random algorithm,
the greedy algorithm, andn2 for lower threshold values.
However, bothna (when threshold is more than -0.345) and
n1 (when threshold is more than -0.785) outperform the
identity transformation. Interestingly, ford1, which intro-
duces the fewest division markers, both the identity trans-
formation and random algorithm outperform the greedy al-
gorithm. As seen in Figure 5, the greedy algorithm intro-
duces the most divisions, which may account for its poor
performance ond1. One implication of these observations

Data Set /
Network Threshold Success
d1-on-n1 -0.085 95.14%
d2-on-n1 1.000 77.04%
da-on-n1 0.630 71.56%
d1-on-n2 1.000 86.09%
d2-on-n2 0.150 88.12%
da-on-n2 0.995 70.96%
d1-on-na 0.550 89.99%
d2-on-na 0.250 82.04%
da-on-na -0.065 78.12%

Figure 4. Success rates for selected data sets and networks.

is thatd1 appears easier to split than the other data sets.
Finally, for data setd2, n2 performs best, followed by

na, the greedy algorithm,n1, and finally the random algo-
rithm. The patterns are similar to those ofd1 except for the
following differences: First, as can be seen in Figure 3c,
the identity transformation does not outperform the greedy
algorithm. In fact,n1 is the only neural network where
the identity transformation is the better ford2. Second the
cross over points are slightly lower. For example,na out-
performs the identity transformation when the threshold is
more than -0.495 compared to more than -0.345 ford1.

Finally, Figure 4 repeats the neural network data from
Figure 2 together with the threshold at which the neural
network maximum occurs. Notice that the specialized net-
worksn1 andn2 tend to do well around a threshold closer
to zero when run with their respective data sets. However,
when a data set other than the one used for training is run
on a network, the threshold producing the maximal correct-
ness dramatically increases.

In summary, the data presented in this section shows
that the neural networks’ correctness is normally better
than those of the greedy algorithm. In particular in cases
where the data set being used is close to the training set for

Number of Divisions
Data Greedy Random
Set Oracle Network* Algorithm Algorithm
da 1515 754 2282 1505
d1 242 213 637 249
d2 431 267 654 437

Figure 5. Number of divisions made by the oracle and
the three algorithms for selected data sets. (*The network
trained on the specified data set is used in each instance)

the network. This is in part because the networks tend to
add fewer splits than the greedy algorithm, causing many
hard words to be left alone, which the greedy algorithm
tends to be overzealous when inserting splits.

5 Related Work

There are several research areas where identifier splitting
is based solely on the division markers already present in
the identifier [2, 4]. At least one project has gone beyond
simple division markers. Anquetil et al. [1] analyzed soft
words in file names to explore the lexical, syntactical, and
semantic structure of file names.

6 Conclusion

Splitting identifiers is important because the resulting soft
words are better suited for analysis by both programmers
and software tools. This paper has presented three algo-
rithms for dividing identifier hard words into their con-
stituent soft words. The random algorithm was used as a
straw man against which to compare the other two. These
included a greedy algorithm and several neural networks.
The neural networks performed well given specialized data
created by a single person; however, performance degrades
when multiple people are involved in splitting the identi-
fiers. The greedy algorithm is consistent across data sets
but generally inserts more divisions than desired.

Having split hard words (identifiers) into their con-
stituent soft words, the next phase of this work is to apply
machine translation techniques in an attempt to associate
consistent meaning with each soft word. One approach is
to make use of probabilistic techniques to determine the
most likely meaning of the soft words.

7 Acknowledgments

This work is supported by National Science Foundation
grant CCR0305330.

References

[1] N. Anquetil and T. Lethbridge. Extracting concepts
from file names; a new file clustering criterion.Soft-
ware Engineering, 1998. Proceedings of the 1998
(20th) International Conference on, pages 84–93,
1998.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lu-
cia, and E. Merlo. Recovering traceability links be-
tween code and documentation.Software Engineer-
ing, IEEE Transactions on, 28(10):970–983, 2002.

[3] B. Caprile and P. Tonella. Restructuring program
identifier names. InICSM, pages 97–107, 2000.

[4] F. Deißenböck and M. Pizka. Concise and consis-
tent naming. InProceedings of the 13th International
Workshop on Program Comprehension (IWPC 2005),
St. Louis, MO, USA, May 2005. IEEE Computer So-
ciety.

[5] T.G. Dietterich and G. Bakiri. Error-correcting output
codes: A general method for improving multiclass in-
ductive learning programs.Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-
91), Anaheim, CA: AAAI Press, 1991.

[6] D. Jones. Memory for a short sequence of assignment
statements.C Vu, 16(6):15–19, December 2004.

[7] D.T. Jones. Protein secondary structure prediction
based on position-specific scoring matrices.J. Mol.
Biol, 292(2):195–202, 1999.

[8] D. Knuth. Selected papers on computer languages.
Stanford, California: Center for the Study of Lan-
guage and Information (CSLI Lecture Notes, no.
139), 2003.

[9] D. Lawrie. Language Models for Hierarchical Sum-
marization. PhD thesis, University of Massachusetts
Amherst, 2003.

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley.
What’s in a name? a study of identifiers. In14th In-
ternational Conference on Program Comprehension,
pages 3–12, 2006.

[11] C. Manning and H. Schutze.Foundations of statis-
tical natural language processing. The MIT Press,
1999.

[12] Steffen Nissen. Neural networks made simple, 2005.

[13] D. Pomerleau. Neural network vision for robot driv-
ing. Early visual learning, pages 161–181, 1996.

[14] J. Rilling and T. Klemola. Identifying comprehen-
sion bottlenecks using program slicing and cognitive
complexity metrics. InProceedings of the11

th IEEE
International Workshop on Program Comprehension,
Portland, Oregon, USA, May 2003.

