Predicting Searcher Frustration

Henry Feild (UMass Amherst) James Allan (UMass Amherst) Rosie Jones (Akamai*)

July 20, 2010

* work done while at Yahoo!

Center for Intelligent Information Retrieval

Satisfaction vs. Frustration vs. Success

- Dissatisfactory:
 - Getting a red light
- Frustrating:
 - Getting every single red light between your house and the airport
- Success
 - Reaching the airport in time to catch your flight
- Take away:
 - You can be dissatisfied and not frustrated
 - You can be successful but still frustrated along the way*

* Ceaparu et al. (Journal of HCI, 2004)

Real search example

- What was the best selling TV model in 2008?
- Actual search sequence from UMass study:
 - television set sales 2008
 - "television set" sales 2008
 - "television" sales 2008
 - google trends

"television" sales statistics 2008

Questions:

- 1. Can we detect when users get frustrated?
- 2. Can we do something to help users once we know they are frustrated?

Real search example

- What was the best selling TV model in 2008?
- Actual search sequence from UMass study:
 - television set sales 2008
 - "television set" sales 2008
 - "television" sales 2008
 - google trends

user got frustrated starting here

• "television" sales statistics 2008

Questions:

- 1. Can we detect when users get frustrated?
- 2. Can we do something to help users once we know they are frustrated?

Center for Intelligent Information Retrieval

Outline

- Ways of detecting frustration
- User study overview
- Models
- Conclusion

Ways of detecting frustration

- Physical sensors
 - camera
 - predicts 6 mental states
 - pressure sensitive mouse
 - pressure sensors around mouse
 - pressure sensitive chair
 - pressure sensors on back and seat of chair
- Intelligent tutoring systems
 - user cognitive state prediction [Cooper et al. (UMAP 2009)]
 - frustration prediction [Kapoor et al. (J. of Human-Computer Studies, 2007)]
 - when will the user click an "I'm frustrated" button

Ways of detecting frustration

Query logs

television set sales 2008 <click> <scroll> **"television set" sales 2008** <click> <click> <back>

Ways of detecting frustration

- Query logs
 - search level
 - query + navigation

television set sales 2008

<click>

<scroll>

"television set" sales 2008

<click>

"television" sales 2008

<click>

<back>

1.1.1

Ways of detecting frustration

- Query logs
 - search level
 - query + navigation
 - task level
 - all searches related to an information need

television set sales 2008

<click>

<scroll>

"television set" sales 2008

<click>

"television" sales 2008

<click>

<back>

1.1.1

Ways of detecting frustration

- Query logs
 - search level
 - query + navigation
 - task level
 - all searches related to an information need
 - user level
 - 'personalization'
 - aggregate stats over previous tasks

nearest cafe? <scroll> "television set" sales 2008 <click>

Where's the

"television" sales 2008

television set sales 2008

<click>

<click>

<back>

What are the best grad school programs in CS?

When's the next time Dave Matthews is playing in Boston?

Center for Intelligent Information Retrieval

Ways of detecting frustration

- Query logs
 - search level
 - query + navigation
 - task level
 - all searches related to an information need
 - user level
 - 'personalization'
 - aggregate stats over previous tasks
- television set sales 2008 <click> <scroll> **"television set" sales 2008** <click> "television" sales 2008 <click> <back>

- Search engine switching (White & Dumais, CIKM 2009)
- Next action prediction (Downey, ICAI, 2007)
- Task satisfaction

(Huffman & Hochster, SIGIR 2007; Fox et al. TIS, 2005)

Center for Intelligent Information Retrieval

July 20, 2010

Outline

- Ways of detecting frustration
- User study overview
- Models
- Conclusion

User study

- 30 users
- assigned 7—8 pre-defined tasks
- searched the web
 - Google, Yahoo!, Bing, Ask.com
- prompted for feedback
- logged sensor readings + web browsing

Center for Intelligent Information Retrieval

Frustration reporting dialog

Center for Intelligent Information Retrieval

Frustration reporting dialog

Frustration labels

Frustration Level	Search
1	television set sales 2008
1	"television set" sales 2008
1	"television" sales 2008
2	google trends
3	"television" sales statistics 2008

Center for Intelligent Information Retrieval

July 20, 2010

Statistics

User ID

	Frustration	No Frustration
Success	46	85
Failure	72	8

Center for Intelligent Information Retrieval

Outline

- Ways of detecting frustration
- User study overview
- Models
- Conclusion

Sensor features

• 240 total

Center for Intelligent Information Retrieval

July 20, 2010

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev
 - over time windows preceding frustration judgment:

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev
 - over time windows preceding frustration judgment:
 - 30 seconds

television set sales 2008

<click>

<scroll>

"television set" sales 2008

<click>

"television" sales 2008

<click>

<back>

. . .

Center for Intelligent Information Retrieval

July 20, 2010

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev
 - over time windows preceding frustration judgment:
 - 30 seconds
 - search

television set sales 2008

<click>

<scroll>

"television set" sales 2008 <click>

"television" sales 2008

<click>

<back>

. . . .

Center for Intelligent Information Retrieval

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev
 - over time windows preceding frustration judgment:
 - 30 seconds
 - search
 - entire task

television set sales 2008 <click> <scroll> "television set" sales 2008 <click> "television" sales 2008 <click> <back>

Center for Intelligent Information Retrieval

. . .

Sensor features

- 240 total
 - 10 sensor readings (from camera, mouse, & chair)
 - min, max, mean, std-dev
 - over time windows preceding frustration judgment:
 - 30 seconds
 - search
 - entire task
 - two versions of each:
 - including time spent responding to prompts
 - excluding time spent responding to prompts

television set sales 2008 <click> <scroll> ***television set" sales 2008** <click> *television" sales 2008 <click> <back>

Center for Intelligent Information Retrieval

July 20, 2010

. . .

Query log features

- 43 total
 - search-level

• task-level

television set sales 2008 <click> <scroll> **"television set" sales 2008** <click> <click> <back>

• user-level

Center for Intelligent Information Retrieval

July 20, 2010

. . .

Query log features

- 43 total
 - search-level

• task-level

television set sales 2008

<click>

<scroll>

"television set" sales 2008

<click>

"television" sales 2008

<click>

<back>

. . .

• user-level

Center for Intelligent Information Retrieval

July 20, 2010

Query log features

- 43 total
 - search-level
 - search duration
 - query length
 - average word length in query
 - pages clicked...
 - task-level

<click></click>	
<scroll></scroll>	
"televisio	n set" sales 2008
<click< th=""><th>></th></click<>	>
"television	" sales 2008
<click></click>	
<back></back>	

television set sales 2008

• user-level

Center for Intelligent Information Retrieval

July 20, 2010

. . .

Query log features

- 43 total
 - search-level
 - search duration
 - query length
 - average word length in query
 - pages clicked...
 - task-level

television set sales 2008 <click> <scroll></scroll></click>
"television set" sales 2008
<click></click>
"television" sales 2008
<click></click>

• user-level

Center for Intelligent Information Retrieval

July 20, 2010

. . .

Query log features

- 43 total
 - search-level
 - search duration
 - query length
 - average word length in query
 - pages clicked...
 - task-level
 - task duration
 - # of searches
 - average query length...
 - user-level

television set sales 2008 <click> <scroll> "television set" sales 2008 <click> "television" sales 2008 <click> <back>

. . .

Query log features

 43 total search-level search duration query length average word length in que pages clicked task-level task duration # of searches average query length user-level 	television set sales 2008 <click> *television set" sales 2008 <click> ry *television" sales 2008 <click> <back> *television" sales 2008 <click> <back> *back> What are the best grad school programs in CS? When's the next time Dave Matthews is playing in Boston?</back></click></back></click></click></click>
Center for Intelligent Information Retrieval	July 20, 2010 32

Query log features

 43 total search-level search duration query length average word length in que pages clicked task-level 	television set sales 2008 <pre><click> <pre><scroll> </scroll></pre> <pre> file(television set" sales 2008 <pre><click> file(television" sales 2008 <pre><click> <pre></pre> <pre></pre></click></pre></click></pre></pre></click></pre>
 task duration # of searches average query length user-level average # of URLs visited powerage # of actions per table 	Where's the nearest cafe? What are the best grad school programs in CS? per task ask When's the next time Dave Matthews is playing in Roston?
Center for Intelligent Information Retrieval	July 20, 2010 33

Modeling

- logistic regression
 - binarize instances:
 - 1 = "not frustrated"
 - 2-5 = "frustrated"

Models

- all features
 - query log + sensors
- Sequential Forward Selection (SFS) over:
 - all features
 - 7 features automatically chosen
 - query log features
 - 5 features automatically chosen
 - sensor features
 - 3 features automatically chosen
- search engine switching [White & Dumais, CIKM 2009]
 - 5 query log features
- Markov Model Likelihood (event patterns) [Hassan et al. WSDM 2009]

Features from two of the models

SFS-QL+Sensors: SFS over query log and sensor features

- 1. task duration
- 2. proportion of unique queries in task

3.	mean of ` unsure ',	30-sec ,	no prompts
4.	minimum of ` unsure ',	search,	prompts
5.	stddev of ` concentrating ',	30-sec,	no prompts
6.	minimum of ` net-back-change ',	search,	no prompts
7.	minimum of `concentrating',	search,	no prompts

W&D: Model used by White & Dumais (CIKM 2009) to detect switching between search engines

[task] task duration

[user] average number of URL's visited per task

[search] character length of most recent query

[search] average token length of most recent query

[task] number of actions performed in task

Center for Intelligent Information Retrieval

July 20, 2010

Results

Model	Accuracy	F _{β=0.5}	Mean Average Precision
W&D	0.75	0.80	0.87
SFS-QL+Sensors	0.69	0.72	0.85
SFS-QL	0.69	0.73	0.80
W&D+MML-time	0.66	0.69	0.76
MML-time	0.56	0.62	0.65
SFS-Sensors	0.55	0.61	0.65
QL+Sensors	0.54	0.49	0.59
Always frustrated	0.44	0.55	

Center for Intelligent Information Retrieval

July 20, 2010

Outline

- Ways of detecting frustration
- User study overview
- Models
- Conclusion

Conclusions

- Searcher frustration is detectable
- Sensors are not helpful using our processing methods
- Best prediction criteria:
 - long task duration
 - user tends to visit few URLs per task
 - few clicks and other actions are performed
 - the most recent query is long, but has very short words

Future work

- What models work best in real search environments?
- How can we help frustrated searchers?

Results

Center for Intelligent Information Retrieval

July 20, 2010