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SUMMARY

Readers of programs have two main sources of domain information: identifier names and comments. In
order to efficiently maintain source code, it is important that the identifier names (as well as comments)
communicate clearly the concepts they represent. Deißenböck and Pizka recently introduced two rules for
creating well-formed identifiers: one considers the consistency of identifiers and the other their conciseness.
These rules require a mapping from identifiers to the concepts they represent, which may be costly to
develop after the initial release of a system. An approach for verifying whether identifiers are well formed
without any additional information (e.g., a concept mapping) is developed. Using a pool of 48 million lines
of code, experiments with the resulting syntactic rules for well-formed identifiers illustrate that violations
of the syntactic pattern exist. Two case studies show that three-quarters of these violations are ‘real’. That
is, they could be identified using a concept mapping. Three related studies show that programmers tend to
use a rather limited vocabulary, that, contrary to many other aspects of system evolution, maintenance does
not introduce additional rule violations, and that open and proprietary sources differ in their percentage
of violations. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Well-formed variable names, as described by Deißenböck and Pizka, can improve code quality [1].
The motivation for their work is the observation that ‘lousy naming in one place spoils comprehen-
sion in numerous other places,’ while the basis for their work is found in the quote ‘research on the
cognitive processes of language and text understanding shows that it is the semantics inherent to
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words that determine the comprehension process’ [1]. Other studies have also pointed to the impor-
tance of good identifier names. For example, Rilling and Kelmola observe ‘In computer programs,
identifiers represent defined concepts’ [2], while Caprile and Tonella point out that ‘Identifier names
are one of the most important sources of information about program entities’ [3].
Deißenböck and Pizka define two characteristics of well-formed identifiers: conciseness and

consistency. In order to verify that a variable is concise and consistent, a mapping from the domain
of identifiers to the domain of concepts is required. Identifiers are termed consistent based on the
concepts that they map to. Such a mapping must be constructed by a domain expert. For new
projects, this mapping can be constructed alongside the program with minimal additional cost. For
existing programs, however, the cost can be prohibitive. This paper considers syntactically concise
and consistent naming, which requires no expert-constructed mapping. This work explores whether,
by only considering the syntactic makeup of identifiers, a useful approximation to the techniques
of Deißenböck and Pizka can be achieved.
Following Takang et al., Brook’s theory of program comprehension underpins the theoretical

framework of this work [4]. Brooks argues that programming involves the construction of mappings
from a problem domain via intermediate domains into a programming domain—represented by
program text. He contends further that the process of program comprehension is one of recon-
structing knowledge about these domains and the relationships between them. The lesser the ambi-
guity and the more the precision in the program text, the easier this task. This process is aided by
methodical identifier choices, such as those that follow the consistency and conciseness rules laid
out by Deißenböck and Pizka [1].
Identifiers that fail to be concise or consistent increase comprehension complexity and its asso-

ciated costs [1]. Such failures can be identified using Deißenböck and Pizka’s techniques, provided
a mapping from identifiers to concepts is available. In the absence of such a mapping, it is still
possible to identify a subset of these naming failures. A technique for doing so is introduced and
empirically investigated in this paper. In more detail, the primary contributions of this paper are
the following:

1. Syntax-based conciseness and consistency: First and foremost, the paper lays out a definition
for syntax-based concise and consistent identifier naming. Being syntax-based, the technique
does not require an expert-constructed mapping from identifiers to concepts.

2. Verification: The verification has two parts. First, it shows the magnitude of syntax-based
conciseness and consistency failures in production code. It then considers the correctness of
the syntactic definition through two case studies.

3. Statistical models: Statistical models are used to better understand the collected data. These
include testing the Vocabulary Hypothesis—that programmers use a rather limited vocabulary,
the Longitudinal Hypothesis—that evolution introduce conciseness and consistency failures,
and finally the Programming Model Hypothesis—that open and proprietary sources differ in
their violations.

The verification study first considers if syntactic violations occur in practice. If not, the technique
is of little value. Assuming violations do exist, the second part of this study considers if the
violations found are the same as those found using Deißenböck and Pizka’s concept-based approach.
Finally, an investigation of the three formal hypotheses is used to better understand the sources of
violations.
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The rest of this paper first presents some necessary background material in Section 2. Definitions
of syntax-based conciseness and consistency are given in Section 3, followed by the layout of
the experimental design in Section 4. The empirical investigation of the syntactic definition, using
almost 50 million lines of code, is presented in Sections 5 and 6. Related work is then considered
in Section 7. Finally, the paper concludes with a discussion of some topics for future investigation
and a summary in Sections 8 and 9.

2. BACKGROUND

This section provides the context for the technique described in Section 3 and the empirical studies
of Sections 5 and 6. It first describes, in more detail, Deißenböck and Pizka rules for well-formed
identifiers. This is followed by a description of identifier composition: the constituent parts of an
identifier used in the remaining sections.

2.1. Well-formed identifiers

Deißenböck and Pizka describe a formal model for well-formed identifier naming that includes
rules for the consistent and concise naming of identifiers [1]. Their rules make use of the set of all
concepts relevant to a program and provide ‘a formal model based on bijective mappings between
concepts and names.’
They define one rule for concise identifier names and two rules for consistent identifier names.

An identifier i for concept c is concise provided its semantics exactly match the semantics of the
concept it represents. For example, output file name concisely represents the concept of the name
of an output file. (A related notion, correctness allows an identifier to represent a more general
concept. For example, file name correctly, but not concisely, represents the concept of the name of
an output file, while the identifier foo neither correctly nor concisely represents the concept.)
There are two rules related to consistent identifiers. They identify inconsistencies caused by

identifier homonyms and identifier synonyms. In natural language, a homonym is one of two or more
words pronounced and perhaps spelled alike but different in meaning (e.g., ‘waste’ and ‘waist’) [5].
A synonym is one of two or more words or expressions of the same language that have the same
or nearly the same meaning in some or all senses (e.g., ‘baby’ and ‘infant’) [5].
In a program, an identifier i is a homonym if it represents more than one concept from the program

(e.g., the identifier file in Figure 1(a)). As Deißenböck and Pizka emphasize, accurately knowing
the set of all concepts used in a program is important. The identifier path is not a homonym in a
program with only one path concept. Thus, it is important that only concepts from the program be
considered. Otherwise, the concept space becomes too large and unwanted inconsistencies arise.
The second inconsistency involves synonyms: two identifiers i1 and i2 are synonyms if the concepts

associated with i1 have a non-empty overlap with the concepts associated with i2 (e.g., the identifiers
file and file name share the concept file name in Figure 1(b). As a second example, the identifiers
list head and list front are also synonyms (head and front are natural language synonyms in this
context).
Using these definitions, Deißenböck and Pizka present a case study in which maintenance intro-

duces the seven identifiers pos, apos, abspos, relpos, absolute position, relative position, and position
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Figure 1. Illustration of the two types of syntactic violation: (a) a homonym violation; (b) how a synonym
violation is also introduced by the function that opens a file; and (c) a plausible homonym only example.

representing two concepts c1 = ‘absolute position’ and c2 = ‘relative position’. The identifier position

would correctly but not concisely represent the concept absolute position provided that the program
did not include any other position concepts (e.g., relative position). As the program includes multiple
specific kinds of positions, the identifier position fails the correctness and conciseness requirements.
In addition, the identifier position also fails the homonym consistency requirement as it is associated
with more than one concept from the program (in this case concepts c1 and c2). Finally, the study
determined that relpos and relative position are both used for concept c2, which violates the synonym
consistency requirement.
In most instances, when the homonym requirement is violated the synonym requirement is also

violated. Figure 1 illustrates this. The identifier file is a homonym associated, in different parts
of the program, with the concept of a file name and elsewhere a file pointer. If the two concepts
are to be referred to in the same scope (at least in a strongly typed language), then at least one
additional identifier would be required as shown in Figure 1(b). However, the inclusion of this second
identifier introduces a synonym violation as the identifiers file and file name both refer to the same
concept.
In this example, any function that opens a file would need to refer to both the file name and file

pointer concepts. As an example in which it is plausible that a homonym would exist in the absence
of a synonym, consider the situation shown in Figure 1(c) in the context of a program that reads
a directory path into the variable path and then passes it to either function f1 or f2 depending on
whether the path is relative or absolute. If f1 and f2 use the name path for their formal parameter,
then the program includes two concepts relative path and absolute path and uses only a single
identifier, path, to refer to them. This violates the homonym rule, but not the synonym rule.

2.2. Identifier composition

Following others who study identifiers’ makeup [1–3,6,7], identifiers are assumed to be composed
of parts herein, referred to as ‘words’—sequences of characters with which some meaning may
be associated. Two kinds of words are considered: hard words and soft words. Hard words are
separated by the use of word markers (e.g., the use of CamelCase or underscores) [6]. For
example, the identifiers sponge bob and spongeBob both contain the well-separated hard words sponge

and bob.
For many identifiers, the division into hard words is sufficient. This occurs when all hard words

are dictionary words or known abbreviations. When a hard word is in neither category, the identifier
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may contain non-well-separated words. The division of a hard word into one or more ‘soft words’
is the goal of identifier splitting [7]. The algorithm used employs a greedy approach that recursively
finds the longest prefix and suffix that are in the dictionary or in a known abbreviation list [7]. Take,
as an example, the splitting of the identifier hashtable entry. This identifier consists of one division
marker (an underscore) and, thus, two hard words, hashtable and entry. The hard word hashtable is
composed of two soft words—hash and table, while the hard word entry is composed of a single
soft word.

3. SYNTAX-BASED CONCISENESS AND CONSISTENCY

This section introduces and formalizes syntactic rules for well-formed identifiers. The absence of a
concept mapping precludes the discovery of identifiers that violate the homonym restriction only.
Testing that identifiers satisfy a restricted form of synonym consistency and conciseness can be
achieved syntactically (i.e., without the identifier to concept mapping). In essence, if an identifier
is contained within another identifier, there is a violation of the syntactic synonym consistency
requirement or the syntactic conciseness requirement or both. Here containment results when one
identifier includes, in the same order, all the soft words from another. For example, the identifier
relative position includes two hard words each composed of a single soft word. Thus, it includes, in
order, all the soft words from the identifier position.
There are two possible violations that can occur when containment is detected between a pair

of identifiers. One possibility is that there is a single concept associated with the two identifiers;
thus, violating Deißenböck and Pizka’s synonym consistency requirement. For example, as shown
in Figure 2(a), if the program contains only the concept relative position and there are the same
two identifiers, position and relative position, a synonym consistency violation exists. This is not a
conciseness problem because position adequately describes the concept relative position when it is
the only type of position used in the program. The other possibility is that each identifier refers to
a different concept in the concept mapping; therefore, the contained identifier violates Deißenböck
and Pizka’s conciseness requirement, as shown in Figure 2(b) by two identifiers position and
relative position. The identifier position maps to the concept absolute position, and relative position

maps to the concept relative position. The identifier position violates the conciseness requirement
by being too general a name for the concept absolute position. When the containment pattern is

Concept

Name
Space

Space

relative_position position

relative position

position

absolute position

(a) (b)

relative position

relative_position

Figure 2. Type I violations: (a) a synonym consistency violation and (b) a conciseness violation.
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Figure 3. Type II violations: (a) a conciseness and synonym consistency violation
and (b) a conciseness violation only.

detected involving a pair of identifiers, the violation will be referred to as a Type I violation, which
is formalized as follows:

Definition 1 (Type I violation). Let identifier id1 be the sequence of soft words sw1 sw2 . . . swn1.
Identifiers id1 and id2 fail either the syntactic synonym consistency requirement or the syntactic
conciseness requirement (a Type I violation) if id2 includes the sequence of soft words w1 w2 . . .

sw1 sw2 . . . swn1 . . . wn2 (i.e., id2 = w1 w2 . . . id1 . . . wn2).

The presence of a second containing identifier (e.g., absolute position, which also contains position)
implies that Deißenböck and Pizka’s rule for conciseness has been violated and that there is a
possible synonym consistency violation as well. It does so because the two containing identifiers
imply that the program includes at least two separate concepts, but the contained identifier does
not precisely indicate to which of the two it refers; therefore, a conciseness violation must exist.
Figure 3 illustrates the two scenarios. In both cases, there is conciseness violation because at

least two concepts exist and the contained identifier (position in both cases) could represent either
concept. In the first scenario, shown in Figure 3(a), a synonym violation also exists. In this case,
there are only two concepts but three identifiers, so position must be a synonym of at least one of the
two. As shown in Figure 3(b), it is possible to violate only the conciseness rule. Here, each identifier
refers to a unique concept; however, given the presence of absolute position and relative position,
position does not concisely describe polar position. When a containee is contained in more than one
container, it is referred to as a Type II violation, which is formalized as follows:

Definition 2 (Type II violation). Let identifier id1 be the sequence of soft words sw1 sw2 . . . swn1.
Identifiers id1, id2, and id3 fail the syntactic conciseness requirement and may fail the syntactic
synonym consistency requirement (a Type II violation) if id2 includes the sequence of soft
words w1 w2 . . . sw1 sw2 . . . swn1 . . . wn2 and id3 includes the sequence of soft words u1 u2 . . .

sw1 sw2 . . . swn1 . . . un3.

For completeness, Definition 2 should address one technical point that it omits for simplicity.
The complete definition requires that id2 not contain id3 or vice versa. In practice, the simple
definition is correct for 99.64% of the 2 699 289 identifiers studied. Thus, the additional complexity
of requiring non-containment is ignored.
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4. EXPERIMENTAL DESIGN

This section describes the experimental design. It first lays out the motivation for the study and
then provides information on the subject programs studied and the statistical tests used to study
them. Finally, the section considers threats to the validity of the empirical studies.

4.1. Motivation

The study presented in Section 5 empirically investigates two important questions related to
Deißenböck and Pizka’s definition for well-formed identifiers. First, do syntactic synonym consis-
tency and conciseness failures exist in real code? Obviously, the technique is of little interest if
violations are infrequent or non-existent. Second, are syntactic violations indicative of the violations
found using the Deißenböck and Pizka concept-map-based definitions? If the syntactic approach
can identify a useful subset of the violations, without the need for a concept mapping, then it forms
the core of a useful tool.
The study also considers, in Section 6, three hypotheses aimed at understanding the origin of

violations of the rules for well-formed identifiers. The first hypothesis, the Vocabulary Hypoth-
esis, asserts that programmers use a limited vocabulary. The second hypothesis, the Longitudinal
Hypothesis, investigates if maintenance and evolution introduce violations. Finally, the Program-
ming Model Hypothesis considers the difference in violations found in open and proprietary source.

4.2. Subject programs

The analysis includes empirical data collected from 186 programs, some of which are different
versions of the same program. Up to 70 versions of a program were considered to support the
longitudinal study. Ignoring multiple versions, 78 unique programs were considered. All but 12
were open-source programs. There exists, however, sufficient proprietary code to obtain statistically
significant results. Programs ranged in size from 1423 to 3 087 545 LoC and covered a range of
application domains (e.g., aerospace, accounting, operating systems, program environments, movie
editing, games, etc.) and styles (command line, GUI, real time, embedded, etc.). Most of the code
was written in C. Significant C++ and Java code were also studied along with a small amount
of 30-year-old Fortran code. Several of the programs were written by programmers whose native
language was not English. For these programs, the analysis was performed using a dictionary of
the programmer’s native language or, if multiple languages were evident in the code, the union
of the respective dictionaries. (The publicly available dictionaries that accompany the Linux spell
checker ispell version 3.1.20 were used.)
Table I shows 10 representative C, C++, and Java subject programs. The two Fortran programs

are not shown in the table. They are PLM compilers from 1975 and 1981 and include 9704 and
11 478 LoC, respectively. The table reports code sizes for C, C++, and Java (and their sum) as
counted by the Unix utility wc (excluding header files). In addition, the total number of non-comment
non-blank lines of code, as reported by sloc [8], is shown. The average percentage of non-comment
non-blank lines varies by language with 66% of the C code, 72% of the C++ code, and 58% of
the Java code being non-comment non-blank lines. The last two columns present the start year of
the project and its release year. These dates were extracted from program documentation (internal
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and external). In general, the release year is more accurate as it can be difficult to determine the
start year for a program that includes third-party libraries written before the program ‘started’.
Table II summarizes statistics regarding the identifiers along with some demographic information

(e.g., dominant programming language, and the start and release years of the program). The table
presents a representative sample of the programs. Table III summarizes the data over all programs

Table I. Subject programs (proprietary programs are named I#).

wc sloc Year

Program C C++ Java Total Total Start Release

cinelerra-2.0 1 044 996 106 357 0 1 151 353 820 980 1996 2004
cpm68k1-v1.2a 132 171 0 0 132 171 102 252 1978 1984
empire server 85 548 0 0 85 548 62 793 1985 1998
eMule0.46c 1759 172 164 0 173 923 135 567 1999 2005
I4.2 2 109 050 398 463 502 965 3 010 478 1 704 823 1993 2004
jakarta-tomcat-5.5 68 003 0 353 604 421 607 219 766 1999 2005
LEDA-3.0 41 610 0 0 41 610 27 425 1988 1992
minux-2.0 326 210 0 0 326 210 244 033 1980 1996
mozilla-1.4 1 047 741 1 949 292 6493 3 003 526 2 107 436 1998 2003
quake3-1.32b 353 806 57 431 0 411 237 281 432 1999 2005

Totals for all codes not just that shown above
open source 19 170 546 14 587 482 6 327 380 40 106 590 27 129 263
proprietary source 7 167 689 787 094 582 107 8 536 890 5 391 815
all 26 338 235 15 374 576 6 909 487 48 643 480 32 521 078

Table II. Basic counts from 14 selected programs.

Dominant Start Release LoC Unique id Hard Soft Per centa

Program language year year (wc) ids instances words words increase (%)

cinelerra-2.0 C 1996 2004 1 151 353 84 612 1 833 424 209 059 261 793 25.2
cpm68k1-v1.1 C 1974 1983 73 172 4167 79 660 4560 8193 79.7
eclipse-3.2m4 Java 2001 2005 3 087 545 167 662 3 893 272 554 068 612 632 10.6
gcc-2.95 C 1987 1999 841 633 44 941 897 728 110 060 146 474 33.1
I1 C 1987 1997 454 609 30 092 482 228 48 125 82 307 71.0
I4.2 C 1993 2004 3 010 478 113 662 2 694 901 328 079 422 364 28.7
I6.6 C 2000 2002 237 257 10 791 104 290 29 207 34 549 18.3
jakarta-tomcat-5.5.11 Java 1999 2005 421 607 19 202 351 487 48 537 54 471 12.2
mozilla-1.6 C++ 1998 2004 2 919 307 189 916 3 649 329 563 448 659 396 17.0
mysql-5.0.17 C++ 1996 2005 1 293 270 50 383 1 023 362 132 249 163 363 23.5
plm80s Fortran 1975 1977 9704 581 22 314 581 886 52.5
quake3-1.32b C 1999 2005 411 237 31 114 542 664 75 474 94 144 24.7
sendmail-8.7.5 C 1983 1996 78 757 2877 62 075 4492 6828 52.0
spice3f4 C 1985 1993 298 734 12 388 452 423 24 599 34 882 41.8

Some of the programs from Table I are repeated for comparison, others were selected to provide diversity in
the presented data.
aPer cent increase is the per cent increase from hard words to soft words.
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Table III. Total counts from all programs.

Totals for (over Hard Soft
all codes not Instances words words LoC Unique id Hard Soft Per cent
just that shown) per id per id per id (wc) ids instances words words increase (%)

Open source 19.2 2.7 3.2 40 106 590 2 504 937 48 098 029 6 817 779 8 040 625 17.9
Proprietary 19.6 2.7 3.5 8 536 890 385 792 7 543 663 1 055 329 1 331 327 26.2

C 18.6 2.5 3.1 26 338 235 1 566 289 29 074 119 3 956 372 4 821 045 21.9
C++ 19.3 2.9 3.5 15 375 576 965 402 18 836 801 2 835 896 3 341 987 17.8
Java 22.1 3.0 3.4 6 909 487 356 225 7 885 428 1 076 709 1 203 537 11.8
Fortran 18.0 1.4 1.8 21 182 2238 40 273 3141 3993 27.1

All 19.3 2.7 3.2 48 643 480 2 890 153 55 638 621 7 872 119 9 370 562 19.0

(not just that of the representative programs from Table II). Summaries include two orthogonal
groupings (open source versus proprietary, and by programming language) and all the data taken
collectively.

4.3. Statistical tests

Several statistical techniques are used in the interpretation of the data gathered during the study.
This section introduces these techniques. First, the Mann–Whitney test provides a non-parametric
comparison that determines whether two samples come from the same distribution. Because the
test is non-parametric, the underlying distribution need not be normally distributed.
When a simple linear correlation between quantitative variables is of interest, Pearson’s linear

regression is used. To measure the effect of explanatory variables X , Y , and Z on response variable
A, the resulting model coefficients, mi , belong to the linear equation

A=m1X+m2Y+m3Z+b

Each coefficient has an associated p-value. A p-value less than 0.05 indicates a significant explana-
tory variable. These models assume the absence of interactions between the explanatory variables;
thus, they are often used to provide an initial impression of the data or to determine the influence
of a particular explanatory variable.
For more complex models, linear mixed-effects regression models are used to analyze the data [9].

Such models allow the examination of important effects that are associated with the response
variables. The initial model includes explanatory variables and a number of interaction terms. The
interaction terms allow the effects of one variable on the response variable to change depending
upon the value of another variable. Backward elimination of statistically non-significant terms
(p>0.05) yields the final model. Note that some non-significant variables are retained to preserve
a hierarchical well-formulated model [10]. This occurs when a non-significant variable is involved
in a significant interaction.
In these models, Tukey’s highly significant difference method for multiple comparisons is used.

However, computing a standard t-value for each comparison and then using the standard critical
value increases the overall probability of a Type I error. Thus, Bonferroni’s correction is used when
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computing p-values to account for multiple comparisons. In essence, each p-value is multiplied by
the number of comparisons, and the adjusted p-value is compared with the standard significance
level (0.05) to determine significance. Tukey’s method and Bonferroni’s correction were chosen
because they are both rather conservative tests.
With both Pearson’s test and the linear mixed-effects regression models, the coefficient of deter-

mination, R2, is reported. This coefficient is interpreted as the proportion of the variability in the
response variable that is explained by the selected explanatory variables. This coefficient ranges
from 0 to 1; the closer the value to 1, the better the model.

4.4. Threats to validity

With any empirical study, it is important to consider threats to validity (i.e., the degree to which
the experiment measures what it claims to measure). There are four types of validity that have
to be considered: external validity, internal validity, construct validity, and statistical conclusion
validity [11].
External validity, sometimes referred to as selection validity, is the degree to which the findings

can be generalized to other organizations or settings. In this experiment, selection bias is possible in
the programs studied; thus, for example, perhaps Java programs in general exhibit different behav-
iors than observed in the study. The programs were selected based on availability (a convenience
sample). In addition, results and trends from the experiment may not apply to other programming
languages, time periods, or natural languages. The selection of programming language includes
those of interest to the authors. The period and natural language again reflect availability. By consid-
ering a large volume of code over a large time frame, and a variety of programming styles and
environments (e.g., real-time systems, embedded systems, event-driven systems, open source, and
proprietary programs), there is high confidence that similar findings would occur for ‘closely related
parameters’. The ‘farther’ away (e.g., 1960 or 1950 codes) one gets the lower the confidence.
Second is the threat to internal validity, that is the degree to which conclusions can be drawn

about the causal effect of the explanatory variable on the response variable. Since soft words can
be accurately compared for containment, the only serious threat to internal validity comes from
potential errors in the extraction tools. Other potential threats to internal validity, for example,
history effects, attention effects, and subject maturation [11] are non-issues in this study given the
absence of human subjects. To mitigate the one existing threat to internal validity, mature tools
were used where possible and newly written tools were extensively tested. This reduces the impact
that implementation faults may have on the conclusions reached.
Construct validity assesses the degree to which the variables used in the study accurately measure

the concepts they purport to measure. The variables used in the study can be measured with high
accuracy. Thus, threats to construct validity are not expected to be a serious concern. Note that if
human judgments on, for example, quality were included in the correlations, then construct validity
would become a more serious concern.
Finally, a threat to statistical conclusion validity arises when inappropriate statistical tests are

used or when violations of statistical assumptions occur. The statistical tests used were chosen based
on past experiments and with the guidance of those trained in statistics. Finally, Tukey’s highly
significant difference test with Bonferroni’s correction is a very conservative test. These factors
serve to reduce the possibility of drawing inappropriate statistical conclusions.
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5. VERIFICATION

This section begins by empirically investigating the rules for well-formed identifiers introduced
in Section 3 using the identifiers extracted from 186 programs comprising just under 50 million
lines of code. It presents two studies. The first considers whether syntactic violations occur in
practice. If not, the technique is of little value. It turns out that violations do exist; thus, the second
study considers two case studies aimed at understanding if they are the same as those found using
Deißenböck and Pizka’s concept-based approach.

5.1. Existence of Type I and Type II violations

The ability to identify Type I and Type II failures is of little value if the pattern does not occur
in practice. Table IV shows the percentage of failures for 42 representative programs along with
the number of unique identifiers in each program and the percentage of severe failures in which
the contained identifier includes at least three soft words. Figure 4 shows the distribution of these
failures for all the 186 programs. Based on the last row in Table IV, an average program includes
just over 2900 identifiers that exhibit a Type I failure and just over 1300 that exhibit a Type II
failure. This indicates that sufficient violations exist in practice that warrant further study.

5.2. Two case studies

The second empirical investigation includes two case studies. The first exhaustively considers all
the conciseness and consistency failures from three small programs. This study compares the tool’s
output with that produced by a human ‘oracle’. The second case study considers a sampling of the
consistency and consistency failures from the larger program eMule, a 170 KLoC C++ program.
Given that a significant number of syntactic synonym and conciseness violations occur, this

section considers next addressing the question: are these violations real? There are two possible
differences between the violations reported by the syntactic approach and those obtained by using
a concept mapping. Clearly, the syntactic approach will miss violations when the identifiers do
not share common soft words. For example, the identifiers file, fp, and fin might be synonyms (all
representing the input file pointer concept), but the syntactic approach cannot at present determine
this. The other difference involves identifiers for which the syntactic approach identifies a violation,
but no violation exists when using the associated concepts.
To determine how many such false positives the syntactic approach produces, this section first

presents results from an exhaustive case study of three of the smaller programs and then a sampling
case study of the larger program eMule. In the first case study, hand inspection of all violations
from three of the smaller programs was performed (two C programs, which.c and uucp.c, and
one Java program VE.java). As shown in Table V, this inspection produced six categories. The
encouraging news is that, varying with language, 51–72% of the Type I violations, and 62–76%
of the Type II violations were true violations. For example, the identifiers status and file status

violate the synonym consistency requirement, while the identifiers home dir and in home indicate two
refinements of the concept home, which means the identifier home fails the syntactic conciseness
requirement.
As shown in Table V, in both the C programs and the Java program, about 10% of the Type

I and Type II violations are false positives caused by the lack of a concept model. For example,
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Table IV. Per cent of Type I and Type II failures for selected programs. (A ‘∗’ marks
programs with a minimum or a maximum value. Proprietary programs are named I#.)

Failures Severe failures
Unique

Program identifiers Type I (%) Type II (%) Type I (%) Type II (%)

LEDA-2.1.1 2226 21 10 2 2
LEDA-3.1.2 2946 20 8 1 1
a2ps-4.12 3593 22 10 3 2
apache 1.3.29 8040 19 8 4 3
barcode-0.98 344 21 6 5 1∗byacc.1.9 507 20 9 1 0
cinelerra-2.0 71 995 21 9 6 4∗compress 164 11 5 0 0
cpm68k1-v1.3 2417 12 6 0 0
cvs-1.11.1p1 5552 20 9 3 2
eMule0.46c 21 372 17 8 6 4
eclipse-2.1 83 207 26 11 10 6
eclipse-3.2m4 155 932 25 9 11 4∗genesis-all-3.0 2110 33 12 13 5
ghostscript-7.07 26 546 19 9 6 4
gnuchess-4.0 1198 16 8 1 1∗gnugo-1.2 114 15 8 0 0
gnugo-2.0 627 15 6 1 1
gnugo-3.0.0 3118 21 9 3 2
httpd-2.0.48 16 975 19 9 5 3
I1 29 619 17 12 5 4∗I4.1 92 547 21 11 10 7
I4.2 110 727 21 11 10 7
I6.1 9869 16 8 5 4
I6.6 10 583 16 8 5 4
I9 41 189 20 9 7 5
I12 1098 19 11 4 3
jakarta-tomcat-3.0 3920 24 9 5 3
jakarta-tomcat-5.5 18 416 25 10 7 4
javabb 073 1716 27 9 5 2
minux-2.0 21 076 15 7 1 1
mozilla-1.0 173 124 22 9 8 5
mozilla-1.6 176 318 22 9 8 5
mysql-5.0.17 46 297 21 9 7 4∗pacifi3d0.3 1139 11 5 1 1∗plm80s 539 8 4 0 0
quake3-1.32b 28 676 18 8 5 3
samba-3.0.0 22 553 20 9 8 4
spice3f4 9845 18 10 5 4∗tile-forth-2.1 661 34 22 2 2
uupc 147 12 7 1 1

Min 114 8 4 0 0
Max 181 032 34 22 13 7
Average 14 512 20 9 4 3
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Figure 4. Summary of Type I and Type II failures for all programs.

Table V. Hand inspection of Type I and Type II violations
for three programs to determine false positives.

Description Type I Type II

C Programs which.c and uucp.c
(1) clear violation 49 72% 22 76%
(2) non-violations 6 9% 3 10%
(3) struct fields 1 1% 0 0%
(4) attribute 9 13% 1 3%
(5) verb–noun phrase 3 4% 3 10%
Total 68 100% 29 100%

Java Program VE.java
(1) clear violation 95 51% 57 62%
(2) non-violations 19 10% 8 9%
(3) struct fields 19 10% 13 14%
(4) attribute 15 8% 5 5%
(5) verb–noun phrase 28 15% 7 8%
(6) a type 9 5% 2 2%
Total 185 100% 92 100%

All three Programs
(1) clear violation 144 57% 79 69%
(2) non-violations 25 10% 11 9%
(3) struct field 20 8% 13 11%
(4) attribute 24 9% 6 5%
(5) verb–noun phrase 31 12% 10 8%
(6) a type 9 4% 2 2%
Total 253 100% 121 100%
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prefix is contained in isolate tilde prefix. While prefix could be replaced with string prefix in the string
concatenation routine where it is found, isolate tilde prefix is a function whose associated concept does
not overlap with that of the variable prefix. A conciseness example from uucp includes the identifiers
FILE, copy file, file mode, and log file. As FILE is a type, its concept is separate from the others, although
the syntactic algorithm cannot, at present, make this determination. Finally, the program which

includes the identifier saw slash, which is contained in saw slash dot and saw slash dot dot. However,
the concepts for these three are distinct; hence, no violation of either rule is present.
The remaining four categories all suggest refinements to the technique. The third category includes

a structure field, such as adr, which overlaps with the local variable next adr. Deißenböck and Pizka
do not explicitly discuss structure fields, but including the structure name (letter in this case) seems
a straightforward extension of their work that removes the synonym failure in this example. The
use of object-oriented programming techniques results in higher percentage in the Java program.
In particular, many failures are a result of similar message names sent to objects of different static
types. Often these identifiers can be disambiguated based on the static type of the receiver.
The fourth category includes what Ada refers to as attributes and C# as properties. For example,

the two identifiers cwd and cwd len (a Type I failure), and the three identifiers result, result index,
and result size (a Type II failure) include variable properties. Here, by convention, programmers
recognize identifiers such as cwd and result as the underlying value of which the other identifiers
are properties. This kind of identification may be automateable using grammar-based techniques
such as those used by Caprile and Tonella [3].
The fifth category considers incorporating part-of-speech information to determine identifier

patterns. An example includes the identifiers home dir and get home dir, which present a Type I
violation; however, they are associated with different concepts and home dir is a concise name for
its underlying concept. By using part-of-speech information, this case can be identified since the
two identifiers differ by a verb. This pattern is explored further in Section 8.
The final category was found only in the Java program, but appears to be stylistic. Violations

consisted of a type, such as JTable, and a variable prefixing the name of the type such as ‘a’, yielding
aJTable. This pattern would be common in Smalltalk code, given its naming convention for formal
parameters. In one respect the names starting with a do not represent good choices. However, the
programmer used these in a very controlled way as parts of test stubs.
In summary, if the last four categories can be automatically identified (only the attribute category

presents any real challenge), then the violations in these categories can be removed. This leaves only
the first two categories: clear violations and non-violations. Encouragingly, post-removal between
85 and 90%, of the syntactic violations are real violations.
The first case study considered all the violations from three small programs. The next case

study is a ‘sampling case study’ of eMule, a 170 KLoC C++ program chosen at random from the
larger programs. Exhaustively examining eMule’s 3725 Type I failures and 1762 Type II failures
is prohibitively expensive. Instead seven informative examples were selected. They represent the
different types of violations encountered in the program as a whole. Each example includes three
parts: the base (contained) identifier, the identifiers that contain it, and a discussion.

(1) m strHost (the contained identifier)
m strHostName

The first case is a classic Type I violation in which a concept that already has a name receives
another. In this case, the identifier m strHost and the identifier m strHostName both refer to the same
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concept (the string representation of the host computer to connect to); hence, this is a synonym
consistency violation.

(2) CheckDiskspace

CheckDiskspaceTimed

As a second classic Type I example, eMule includes two methods for checking if sufficient disk space
exists to write a file. The identifiers fail to satisfy Deißenböck and Pizka’s definition of conciseness,
since CheckDiskspace actually refers to the concept untimed disk space check. In this instance, one
obvious fix would be to rename the first method CheckDiskspaceUntimed or something similar. This
would disambiguate the names for the two concepts of timed and untimed disk space checks and
would eliminate the conciseness violation.

(3) IcmpCloseHandle

lpfnIcmpCloseHandle

The third example illustrates a case in which Type I violation occurs, but knowing a little about the
identifiers removes any real issue. EMule includes the class type IcmpCloseHandle and the variable
lpfnIcmpCloseHandle of that type. Both identifiers represent the same concept, but knowing that one
is a type name disambiguates the two.

(4) m n file

m n file size

The identifiers m n file and m n file size form a less egregious Type I violation because m n file

occurs as a local variable in a separate scope from m n file size. The method ‘int CZIPFile::GetCount()

{ return m nFile; }’ suggests that consistency could be attained by renaming m nFile to m nFileCount.
This violation at first appears to fall into the ‘attribute’ category, but it is not. It is a true violation.

(5) m wndSplitter

m wndSplitterchat

m wndSplitterirc

m wndSplitterstat

· · ·
The eMule class CSplitterControl implements a window splitter control. The server window includes
a window splitter, under the name m wndSplitter, as do several other windows. For example, the
‘chat’ window includes m wndSplitterchat which, like m wndSplitter is of type CSplitterControl. (Note
that this identifier is not well separated and thus identifier splitting into soft words is required to
uncover this conciseness failure.) It is hard to tell whether the program’s evolution began with a
single splitter (in the server class) and the others were subsequently introduced or not, but in order
to have concise names, m wndSplitter should be renamed as m wndSplitterServer, which removes the
Type II violation.

(6) GetFileType

GetFileTypeDisplayStr

GetFileTypeByName

GetFileTypeSystemImageIdx

GetFileTypeDisplayStrFromED2KFileType
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(a)

(b)

Figure 5. Code snippets for the Type II case study.

The penultimate example involves five identifiers, which indicates a Type II violation. First, the
identifier GetFileType needs to be renamed so that it no longer fails the conciseness requirement.
One naive way of doing so, which focuses on separating it from the second identifier, is to replace
the first identifier with GetFileTypeNonDisplayStr or GetFileTypeInternalStr.
Although this naive approach removes the Type II violation, it does not address the root problem.

All five of the identifiers need to be distinguished from each other so that the concept of each
is clear. A snippet showing the definition of the third identifier appears in Figure 5(a). As is
clear from the comments preceding the definition, to achieve conciseness, the third identifier
should be replaced with something like GetFileTypeInternalByName. Similarly, to achieve concise-
ness, along with the fourth identifier, the first would need to be separated from the concept of an
‘image index’.
Finally, part of the definition of the fifth identifier is shown in Figure 5(b). Here, the comment

preceding the definition confuses the situation as the method produces an internal file type, but
unlike GetFileTypeByName, this one appears to be appropriate for the GUI. This indicates whether
internal file type names can be suitable for the GUI or not. This is something that the names of the
two methods fail to make clear. For example, the identifier GetFileTypeByName should bear more
in common with GetFileTypeDisplayStrFromED2KFileType as it too returns an internal type name. As
with the others, this identifier also conflicts with the first. The name for GetFileType would need to
take all these concepts into account. In addition, GetFileTypeDisplayStr introduces a Type I violation,
which also needs to be addressed. To the extent that this example seems confusing, it is an excellent
indication of the value of concise and consistent identifiers, as they would have had helped make
clear the various concepts related to type names.

(7) ident

IPHeader.ident (a field)
m bLogSecureIdent

m htiLogSecureIdent

· · ·
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The final example is really a non-example. The identifier ident, which is contained in 37 other iden-
tifiers, exists in two separate contexts. First, it is a local variable of the method CIrcMain::Connect().
As there is no real conflict with the associated concepts for this local variable, it suggests that scope
information might play a role in helping an engineer determine when a violation might be a false
positive. The second use of ident is as a field of the structure IPHeader. One might view its full name
as IPHeader.ident which would be a more concise name. Deißenböck and Pizka do not discuss using
the context provided by a scope or a type (class or structure), but it seems to be a straightforward
improvement.

6. STATISTICAL MODELS

This section presents three statistical models that consider potential causes of rule violations. The
first considers an observation by Antoniol et al., that programmers tend to use a rather limited
vocabulary [6,12]. The second presents a longitudinal study to address the question ‘does evolution
introduce conciseness and consistency failures?’ The final statistical model considers a comparison
of open and proprietary source.

6.1. Limited programmer vocabulary

The first of the three hypotheses addresses an observation made by several authors (e.g., Antoniol
et al. [6] and Caprile and Tonella [12]) that ‘Programmers tend to process application-domain
knowledge in a consistent way when writing code: program item names of different code regions
related to a given text document are likely to be, if not the same, at least very similar’ [6]. Thus,
programmers tend to use a rather limited vocabulary.
To formally investigate this observation, the consistency and conciseness failures in all programs

were recomputed after factoring in natural language synonyms. This is done using WordNet, a
powerful tool for processing a natural language [13]. In particular, WordNet’s synonym sets are used
to look for violations that involve natural language synonyms. For example, doing so allows the tool
to correctly determine that the identifiers last opt and end opt are synonyms as last and end are natural
language synonyms in English. Formally, Definitions 1 and 2 were extended as follows: assume that
for soft word w, S(w) denotes the natural language synonyms of w. In the definition of Type I and
Type II violations replace w1 w2 . . . sw1 sw2 . . . swn . . . wm with w1 w2 . . . s1 s2 . . . sn . . . wm ,
where si ∈ S(swi ) with the corresponding replacement performed on id3.

Vocabulary Hypothesis:

H0: Programmers use an extensive vocabulary and thus the number of Type I and Type II
violations will increase when natural language synonyms are taken into account.

Ha : Programmers use a limited vocabulary and thus the number of Type I and Type II violations
will be unaffected when natural language synonyms are taken into account.

Figure 6 shows a graphical comparison of the relation between the percentage of violations with
and without using WordNet’s synonym sets. For Type I (black) and Type II (gray), the jagged (solid)
line shows the impact of using synonyms as compared to the original data shown by the dashed
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Figure 6. Incorporating natural language synonyms from WordNet. The x-axis shows each program sorted
separately for Type I and Type II violations without using WordNet.

line. Visually, the difference is minimal. Statistically, Pearson’s linear regression is used to model
the relation between the percentage of violations with and without using synonym sets. For Type
I violations, incorporating natural language synonyms increases the number of violations by 2.8%
(R2 = 0.998). For Type II violations, the increase is only 2.1% (R2 = 0.996).
The models for Type I and Type II violations show a statistically significant increase in violations

when natural language synonyms are incorporated. However, as the magnitude of the increase is
quite small, the models support rejecting the null hypothesis. In other words, the rather minimal
increase for both Type I and Type II violations supports the observation that programmers use a
limited vocabulary. In particular, they do not use a significant number of natural language synonyms.

6.2. Longitudinal study

The second of the three hypotheses addresses the question ‘Does evolution introduce concise-
ness and consistency failures?’ In principal, if a program takes on new concepts as it ages, then
identifiers that were previously consistent and concise may become inconsistent and ‘unconcise’.
This occurs when software evolution introduces new identifiers (and their associated concepts).
For example, the program which, actually the getopt library, originally only processed short-form
command line options. Later, a long form was added. The current code includes the identifiers
options and long options. Knowing the code’s history, options is understood to be associated with
the concept of short options. While options was originally a consistent identifier, the introduction
of the concept of long options means that it is no longer concise. More formally this subsection
investigates the hypothesis:

Longitudinal Hypothesis:

H0: Software maintenance does not introduce conciseness and consistency failures.
Ha : Software maintenance introduces conciseness and consistency failures.

Seven of the programs studied included four or more versions. Pearson’s linear correlations
predicting the percentage of Type I and Type II failures as a function of the version number were
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constructed for each program. Overall there is insufficient evidence to reject the null hypothesis;
hence one cannot conclude that evolution introduces failures. This is visually apparent with the two
examples shown in Figure 7. Leda is typical of most of the programs showing some ups and downs
but no significant trend. Gnugo shows a slight increase initially, but then levels out and remains flat
from versions 10 through 70.
The relevant statistics are shown in Table VI. The first thing to notice in the data is that the slope

for each regression line is less than a third of 1%. Only one model, for the Type II violations of
Mozilla, shows a significant correlation where 63% of the variation in Type II failures are explained
by a variation in version. However, in this model (in which the slope is statistically significant with
a p-value of 0.03), the slope is negative and quite small: it would take 25 releases for the number
of Type II failures to drop by 1%.
Looking at its early development, gnugo actually shows a significant correlation. When predicting

Type I failures, the max occurs when considering the first 13 versions. Here, R2 is 0.60 and the
slope is 0.24% (with a p-value of 0.002). For Type II failures, the max occurs at 10 versions with
an R2 of 0.80 and the slope is 0.76% (p-value of 0.001). However, the slopes of the resulting
linear equations (0.76 and 0.25%, respectively) are quite small and as more versions are considered

Figure 7. Two example programs from the longitudinal study.

Table VI. Key statistics for longitudinal study. (Statistically significant values in bold.)

Type I failures Type II failures

Program R2 Slope (%) Slope p R2 Slope (%) Slope p

tomcat 0.07 0.19 0.67 0.06 −0.02 0.68
mozilla 0.12 −0.01 0.45 0.63 −0.04 0.03
I6 0.00 0.00 0.97 0.38 −0.05 0.20
gnugo 0.32 0.06 <0.001 0.32 0.03 <0.001
cpm 0.07 −0.13 0.74 0.22 0.11 0.53
barcode 0.14 −0.14 0.31 0.41 −0.27 0.06
leda 0.13 −0.13 0.31 0.28 −0.14 0.11
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the lines flatten out. Thus, there is insufficient evidence to reject the null hypothesis; one cannot
conclude that evolution introduces failures.

6.3. Programming model

The final of the three hypotheses addresses a question that often arises when one considers both
open and proprietary source is ‘do the two differ?’ The programming culture for open source
systems tends to include ‘a spectrum of processes from undefined and flexible processes to some
extent defined and controlled processes among open-source projects’ [14]. In contrast, the culture
in which proprietary programs are produced is often quite strict. Including strict style guidelines
that encourage uniformity across all of the source code gives the engineers less freedom in coming
up with identifiers. This section considers the impact of the programming models used by these
two cultures on conciseness and consistency failures:

Programming Model Hypothesis:

H0: Programming model (open source versus proprietary) does not affect the number of concise-
ness and consistency failures.

Ha : Programming model (open source versus proprietary) affects the number of conciseness
and consistency failures.

Linear mixed-effect regression models are used to investigate the programming model hypothesis.
For Type I and Type II violations, backward elimination started with the explanatory variables open
source along with the other potential explanatory variables program size, start year, release year,
and programming language. For Type I failures, the resulting model includes only release year and
programming language. As open source is absent from the model, it does not play a significant role
in predicting the percentage of failures. It is interesting to note that when compared directly (using
a Mann–Whitney test as the distributions are not normally distributed) more violations occur in
open-source code than in proprietary-source code (p= 0.0003). Together these results imply that
other explanatory variables are more important in explaining the difference in the percentage of
Type I failures.
For Type II failures, the resulting mixed-effect regression model (starting from the same set of

explanatory variables as with Type I failures) includes the explanatory variables start year, release
year, programming language, and open source. However, there exists an interaction between open
source and release year. Thus, release year has a different effect when considering open- and
proprietary-source code. In this case, an increase in release year brings a reduction of 0.28% in
the percentage of Type II failures in proprietary code, while it brings an increase of 0.14% in the
percentage of Type II failures in open-source code. A possible cause for this is the greater use of
engineering discipline in the construction of proprietary source, which leads to more concise and
consistent naming. At the same time, the growth in the size of and in the number of programmers
working on open-source projects has the opposite effect.
In summary, for Type I violations there is evidence (from the Mann–Whitney test) that open-

source code includes more violations; however, the difference is overshadowed by other explanatory
variables in the mixed-effects model. For Type II violations, the mixed-effect model indicates that
the percentage of violations drops as the field matures, which may be caused by a more predominant
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engineering discipline. However, for open code, the percentage grows. Based on these models, in
particular the one for Type II violations, the null hypothesis is rejected.

7. RELATED WORK

This section briefly surveys work related to that presented herein. Anquetil and Lethbridge (among
others) have observed that there is some controversy over the value of general identifier names [15].
For example, Sneed finds that ‘in many legacy systems, procedures and data are named arbitrarily
. . . programmers often choose to name procedures after their girlfriends or favorite sportsmen’ [16].
A similar pattern was observed by one of the authors at a previous industrial position in the code
of a colleague who was fond of Star Wars. This controversy on the value of dictionary word
identifiers was also noted by Takang et al. [4]. For example, Shneiderman and Mayer report that
‘variable names had a statistical significance on comprehension.’ However, their study included only
beginner students as participants. On the flip side, Sheppard et al. observe that ‘variable names did
not have a statistical significance on the subject’s performance.’ This was based on an experiment
that involved 36 professional programmers. In this second experiment, the programs were quite
small (they varied between 26 and 57 lines of code), which may have been too short to bring out
differences especially with professional programmers. The study presented herein follows Anquetil
and Lethbridge in assuming that software engineers are trying to give significant names (although
they may have failed in this attempt) [15]. With the spread of true engineering discipline in the
software construction process, this assumption is increasingly more likely to be satisfied.
Anquetil and Lethbridge consider extracting information from type names in a large Pascal appli-

cation [15]. In their definition, two records implement the same concept if they have similar field
names and types (though they are lax on enforcing type equivalence). Thus, this work provides a
framework in which a form of concept identification (or at least concept equivalence) through types
can be studied. The main outcome of their work is the notion of a word-based conceptual similarity
metric for Pascal record types (a similar notion would apply to structure or class types). The tech-
nique assumes the existence of ‘word markers’ (i.e., only hard words were compared). An improved
understanding of splitting identifiers into soft words allows the work of Anquetil and Lethbridge to
be extended to programs without well-separated identifiers. Furthermore, understanding the number
of words (soft or hard) per identifier helps us to understand how well the conceptual similarity is
expected to work.
Type names may also play a useful role in identifying concise and consistent identifiers. Type

information is an example of the kind of information that a fact extractor (e.g., Columbus [17])
can extract about identifiers. For example, tree node is contained in visit tree node, and position is
contained in absolute position. Knowing that visit tree node is a function and tree node, a formal
parameter of the function indicates that the two are associated with different concepts, and thus
not a violation of the synonym rule, in the same way that two global integer variables position and
absolute position are. A related refinement would not consider the identifiers hash fn, node hash fn,
and ast hash fn a conciseness violation if the extracted facts indicated that hash fn was a function
pointer in an ADT and the other identifiers were functions whose addresses were passed to this
pointer.
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Caprile and Tonella analyzed function identifiers by considering their lexical, syntactical, and
semantical structures [12]. The latter present an approach for restructuring function names aimed at
improving their meaningfulness [3]. The analysis involves breaking identifiers into well-separated
words (i.e., hard words). The restructuring involves two steps. First, a lexicon is standardized by
using only standard terms for composing words within identifiers. Second, the arrangement of
standard terms into a sequence has to respect a grammar that conveys additional information. For
example, the syntax of an indirect action, where the verb is implicit, is different from the syntax of
a direct action. They were able to come up with an effective grammar for the restricted domain of
function identifiers. Extending this to all identifiers is a non-trivial task, but the resulting grammar
would be useful in refining the notion of syntactic consistency and conciseness.
Two quality measures for the resulting grammar are considered. First, the coverage of a grammar

is the ratio of strings of the language for which at least one syntactic derivation can be obtained
to the set of all strings in the language. Second, grammar ambiguity measures the possibility of
producing a given string of the language with more than one syntactic derivation. In addition to
grammar coverage and ambiguity, other metrics are also proposed to measure the value of identifiers
in a program. For example, the average number of words per identifier and the frequency of use of
abbreviations.
Deißenböck and Pizka stress the value of identifiers in source code [1] as they make up a

significant amount of the unique information available from the source. For example, Eclipse 3.0M7
has 94 829 different identifiers which are around the same number of words as in Oxford Advanced
Learner’s Dictionary. They also introduced a tool that enforces the rules for consistent and concise
identifiers during program construction. This is done with the aid of an identifier dictionary that
holds the concept mapping. They find that the tool improves the productivity of programmers.
Finally, identifiers play a key role in several applications from information retrieval (IR) to soft-

ware. For example, the early work of Maarek et al. [18], which used IR techniques to automatically
construct software libraries, made heavy use of identifiers. More recently, Marcus et al. used IR
techniques to identify semantic similarities between source code documents [19]. Based on IR
techniques, similar high-level concepts (e.g., abstract data types) are extracted as identified clusters
in the code. In a similar work, Kawaguchi et al. described an automatic software categorization
algorithm to help find similar software systems in software archives [20]. They explore several
known approaches including code clones-based similarity metric, decision trees, and latent semantic
analysis. Finally, in a related vein, Marcus et al. addressed the problem of concept location using
latent semantic analysis [21]. Two concept locators were presented—one based on user queries
and the other on partially automated queries. As each of these techniques relies on the information
content of the identifiers, well-formed identifiers, such as those satisfying the rules presented in
Section 3, should improve each of these techniques.

8. FUTURE CHALLENGES

This section considers inward looking and outward looking future challenges. The two inward
looking challenges consider false positives and deal with abbreviations. First, the case study from
Section 5 suggests that it is possible to improve the identification of violations by exploiting certain
grammatical patterns. This is, in essence, the start of a grammar-based technique similar to the
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function–name grammar of Caprile and Tonella [3]. For example, two common patterns seen in
the empirical studies have an identifier that is a noun phrase and another that includes a verb or
an adjective with the noun phrase. For example, tree node and visit tree node are examples of the
verb–noun phase pattern, while bit and highest bit are examples of the adjective–noun pattern. In the
first example, syntactically, tree node is contained in visit tree node and is thus a (syntactic) violation.
However, these two identifiers are associated with different (related) concepts, and tree node is a
concise name for the concept. Thus, no violation exists in the Deißenböck and Pizka sense.
A preliminary study counted the violations that matched either pattern. The verb form accounts for

4.5% of the synonym violations. This is consistent with the percentage identified in the exhaustive
case study of Section 5. The adjective form accounts for 2.2%, or about half as many of the
violations. Together the two grammar-based patterns identified 6.7% of the violations. Assuming
that the case study from Section 5 is representative, this represents about one-quarter of the false
positives.
Second, the current tool does not discover the violation that occurs between absolute path and

abs path because abs is an abbreviation of absolute. Definitions 1 and 2 could be broadened to
include such cases as follows: for soft word w, let A(w) denote the set of all dictionary words
appearing in the program that maps to the same concept as w. In Definitions 1 and 2 replace
w1 w2 . . . sw1 sw2 . . . swn . . . wm with w1 w2 . . . a1 a2 . . . an . . . wm , where ai ∈ A(swi ). As
absolute is in A(abs), the above violation would be detected as a violation.
The two outward looking challenges consider improving tools by using well-formed identifiers

and building new tools using the approach. The ability to automatically detect violations can improve
solutions to other problems. For example, most fault detectors use only various structural measures
of the code [22]. Given that well-formed identifiers have a positive impact on comprehension [1],
a measure based on violations of the rules from Section 3 would provide a new information that
should improve the fault prediction models.
A second outward looking idea considers tools support for identifying Type I and Type II viola-

tions that is integrated into an IDE. Support could range from alerting a programmer of a violation
introduced by a new identifier to forcing the use of names that do not produce violations, or perhaps
suggesting replacement variable names as Deißenböck and Pizka do in their prototype tool [1].
In the latter case, natural language processing techniques might be employed. For example, when
long options is first introduced the programmer can be made aware that it conflicts with the existing
identifier options. This implies that the existing containee identifier options should be replaced with
an identifier associated with the concept ‘all options that are not long.’ A tool like WordNet can then
be used to propose antonyms, which leads to the name short options as a replacement for options.
If multiple replacements were possible, then these could be presented to the programmer. Finally,
existing program transformations (such as Eclipse’s rename refactoring) would be used to update
the source code.

9. SUMMARY

Modern programming languages provide programmers with too much freedom when selecting iden-
tifiers. Informally, this is quite clear from the large number of violations considered while conducting
this study. There is a real comprehension cost when identifiers are not concise and consistent. In one
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example, the meaning of a function returning the identifier found took a considerable time for iden-
tification. Replacing the returned identifier with the concise and consistent identifier found free space

removed the violation and made the goal of the function considerably clearer. Formally, several
studies have noted the importance of making careful choices for identifier names [1–3,23]. The
rules presented in this paper provide an easily automated method for restricting the choices that a
programmer has. The resulting well-formed identifiers improve code quality [1].
The empirical study presented in Section 5 shows that violations of the syntactic rules for well-

formed identifiers occur in practice. Furthermore, the second study shows that the violations found
largely match those found using Deißenböck and Pizka’s concept-based approach. Thus, easily
automateable tool support based on these definitions is viable. Empirical study was also used in
Section 6 to better understand the causes (and non-causes) of violations. The most interesting
result from this section is that the per cent of identifiers violating the syntactic rules in open and
proprietary sources differ.
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